

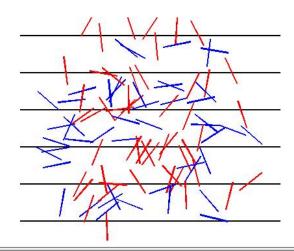
Logistics Simulation with Arena

Allen Jiao LRC in NKU

Research Methodology-Big Picture

- Analytical Research
 - Mathematical models
 - Theoretical analysis
- Empirical Research
 - Case study
 - Data study
 - **Description Statistics**
 - Regression, ANOVA, Factor analysis etc.
 - Simulation
 - Data types
 - Survey/Interview date
 - Archival date
 - Simulation data

Simulation Is ...



- Simulation are methods and applications to imitate or mimic real systems, usually via computer
- Computer simulation is usually used to
 - Numerically evaluate some policies on a computer
 - Use software to imitate the system's operations and features

Simulation without computer?

- Can we carry on a simulation projects without computer?
 - Buffon and the Pai (ratio of the circumference of a circle to the diameter)
 - Setting for the experiment
 - The probability of intersects: $p = 2L/\pi d$
 - Results he got: 2212/704=3.142

When to use simulation?

When to use simulation?

- When it's hard to play with the actual one
 - When the system doesn't exist and will be built;
 - When it would be too expensive, or dangerous to deal with real syste m. Simulation model is usually much easier, faster, cheaper & safer;
- When we want to try a brand new idea to improve
 - Making decisions for an alternative system
 - Try wide-ranging different parameters with the model;
- When we want to confirm or proof the accuracy of our theory
 - Use numerical study after the theoretical models had been built

Advantages of Simulation

- Flexibility to model things as they are (even if messy and complicated)
 - Avoid looking where the light is (a morality play):

You're walking along in the dark and see someone on hands and knees searching the ground under a street light.

You: "What's wrong? Can I help you?"

Other person: "I dropped my car keys and can't find them."
You: "Oh, so you dropped them around here, huh?"

Other person: "No, I dropped them over there." (Points into the darkness.)

You: "Then why are you looking here?" Other person: "Because this is where the light is."

- The real power of simulation is in studying complex models
 - Allows uncertainty, nonstationarity in modeling

Popularity of Simulation

- Has been consistently ranked as the most useful, popular tool in the broader area of operations research / management science
 - 1979: Survey 137 large firms, which methods used?
 - 1. Statistical analysis (93% used it)
 - **2. Simulation (84%)**
 - 3. Followed by LP, PERT/CPM, inventory theory, NLP, ...
 - 1980: (A)IIE O.R. division members
 - First in utility and interest simulation
 - First in familiarity LP (simulation was second)
 - 1983, 1989, 1993: Longitudinal study of corporate practice
 - 1. Statistical analysis
 - 2. Simulation
 - 1989: Survey of surveys
 - Heavy use of simulation consistently reported

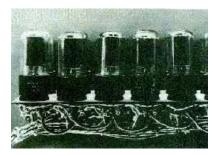
Since these surveys, hardware and software have improved, probably making simulation even more attractive

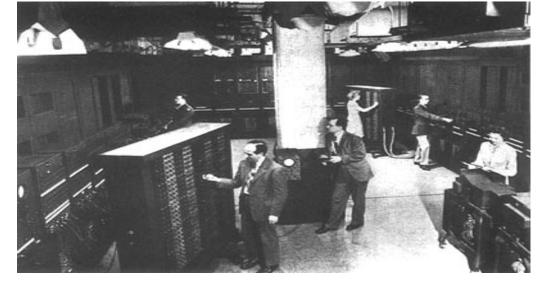
The Bad News

- Don't get exact answers, only approximations, estimates
 - Also true of many other modern methods
 - Can get confidence intervals with enough replications
- Rely on the development of power of computer when dealing with big complicated project.

Different Kinds of Simulation

- Static vs. *Dynamic*
 - Does time have a role in the model?
- Continuous-change vs. *Discrete-change*
 - Can the "state" change continuously or only at discrete points in time?
- Deterministic vs. *Stochastic*
 - Is everything for sure or is there uncertainty?
- Most operational models:
 - Dynamic, Discrete-change, Stochastic
 - Textbook: Chapter 2 discusses a static model, and Chapter 11 discusses continuous and combined discrete-continuous models


When Simulations are Used


- Uses of simulation have evolved with hardware, software
- The early years (1950s-1960s)
 - Very expensive, specialized tool to use
 - Required big computers, special training
 - Mostly in FORTRAN (or even Assembler)

• Processing cost as high as \$1000/hour for a sub-286 level

machine

1946 ENIAC
First Computer

When Simulations are Used (cont'd.)

- The formative years (1970s-early 1980s)
 - Computers got faster, cheaper
 - Value of simulation more widely recognized
 - Simulation software improved, but they were still languages to be learned, typed, batch processed
 - Often used to clean up "disasters" in auto, aerospace industries

When Simulations are Used (cont'd.)

- The recent past (late 1980s-1990s)
 - Microcomputer power
 - Software expanded into GUIs, animation
 - Wider acceptance across more areas
 - Traditional manufacturing applications
 - Services
 - Health care
 - "Business processes"——logistics
 - Still mostly in large firms

When Simulations are Used (cont'd.)

The present

- Proliferating into smaller firms
- Becoming a standard tool
- Being used earlier in design phase
- Real-time control

The future

- Exploiting interoperability of operating systems
- Specialized "templates" for industries, firms
- Automated statistical design, analysis
- Networked sharing of data in real time
- Integration with other applications
- Distributed model building, execution

• Thanks

• Q&A

LRC,CESD,NKU Simulation with Arena Aug,2016