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ABSTRACT

This article considers a class of fresh-product supply chains in which products need
to be transported by the upstream producer from a production base to a distant retail
market. Due to high perishablility a portion of the products being shipped may decay
during transportation, and therefore, become unsaleable. We consider a supply chain
consisting of a single producer and a single distributor, and investigate two commonly
adopted business models: (i) In the “pull” model, the distributor places an order, then
the producer determines the shipping quantity, taking into account potential product
decay during transportation, and transports the products to the destination market of the
distributor; (ii) In the “push” model, the producer ships a batch of products to a distant
wholesale market, and then the distributor purchases and resells to end customers. By
considering a price-sensitive end-customer demand, we investigate the optimal decisions
for supply chain members, including order quantity, shipping quantity, and retail price.
Our research shows that both the producer and distributor (and thus the supply chain) will
perform better if the pull model is adopted. To improve the supply chain performance, we
propose a fixed inventory-plus factor (FIPF) strategy, in which the producer announces
a pre-determined inventory-plus factor and the distributor compensates the producer for
any surplus inventory that would otherwise be wasted. We show that this strategy is a
Pareto improvement over the pull and push models for both parties. Finally, numerical
experiments are conducted, which reveal some interesting managerial insights on the
comparison between different business models. [Submitted: March, 22, 2011. Revised:
September 28, 2011; Accepted: December 22, 2011]
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INTRODUCTION

It is common practice for firms engaged in the producing, distributing, and retailing
of fresh products (e.g., live seafood, fresh fruit, fresh vegetables, cut flowers) to
transport their products, either through third-party logistic providers or using their
own vehicles, from the production base to distant markets. Due to the highly
perishable nature of the products, transportation is regarded as an important link
in fresh-product supply chains because producers and/or distributors face the risk
that a portion of the products may decay during transportation. As indicated by
Wilson, Boyette, and Estes (1995): “Fresh fruits, vegetables, and flowers are highly
perishable because they are alive . . . . They can become sick, deteriorate, and die.
Dead fresh fruits and vegetables are not marketable!”

Empirical data show that loss during the distribution chain of fresh products is
significant in developed and developing countries. Ferguson and Ketzenberg (2006)
noted that grocery retailers in developed Western economies can incur losses of
up to 15% due to damage and spoilage of perishable items. An Accenture report
showed that in China, the annual loss in fruit and vegetables is around $8.9 billion,
almost 30% of China’s annual output (Bolton & Liu, 2006). The discarded portion
of fresh products is reported to be high, including 30%–50% for mangos, 20%
for bananas, 40%–50% for pineapples, and 30%–50% for oranges (Anonymous,
2003). A recent report from the National Development and Reform Commission
(NDRC) reveals that the food spoilage rate is still high in China, with 20% of
fresh fruit and vegetables, 30% of fresh meat, and 15% of seafood being spoiled
in delivery, costing CNY100 billion a year (Anonymous, 2010). It is recognized
that long distance transportation accounts for the largest portion of product losses,
especially for countries/regions that lack sophisticated transportation facilities.
For example, Leung (2008) indicated that “transport delays and inadequate cold
storage cause 30%–40% of fruit and vegetables to rot at the harvesting site or while
in transit.”

The perishability of products during transportation creates great challenges
for companies involved in the supply chain. For example, the weight loss of
seafood during transportation is one of the major concerns for fishery companies
located in coastal areas of China (e.g., Guangdong and Shandong provinces) in
their supply chain management. This is because the product deterioration not only
means losses to the companies, but also affects the inventory and pricing decisions
of the producer and distributor in the process of matching supply with demand.
Intuitively, the allocation of transportation risk (i.e., the risk that some portion of
products may decay during transportation) among supply chain members varies
across the different ways of doing business between upstream and downstream
companies. For example, considering the economies of scale in transportation,
some producers prefer to transport their products either by their own vehicles or by
third-party logistics providers, to supply distributors/retailers in distant markets;
in certain industries, some distributors and large retail chains (e.g., Walmart)
prefer to consolidate different goods purchased and conduct the transshipment
themselves. Normally, the loss from product deterioration is supposed to be borne
by the company that owns the product during transportation. As a result, whether
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the producer or the distributor is responsible for the transportation may have a
different impact on their respective profitability.

A recent work by Cai, Chen, Xiao, and Xu (2010) studied optimal ordering
and pricing decisions and coordination mechanisms for a fresh-product supply
chain in which the distributor is responsible for the transportation process (i.e.,
they consider the free on board (FOB) business model). In this article, we will
focus on another class of business models in which the transportation is under the
responsibility of the upstream producer. In the FOB business model studied by Cai
et al. (2010), transportation and market risks (i.e., risk from random fluctuations
of demand) are both borne by the downstream distributor. However, in this article,
the potential loss from product decay is subject to the producer. Except for market
risk, the distributor also faces the risk that the producer may be unable to deliver
up to the level expected because the distributor has an unreliable supplier.

As we will show in later sections, there are variants of business models
between producers and distributors, with the producer being responsible for trans-
porting the products. For example, there are different practices in the cut flower
industry between the southern and northern regions of China. In the south (e.g.,
Yunnan province) many distributors order the product before the flower supplier
ships the products, whereas in the north (e.g., Liaoning province) many producers
simply drive the flowers for 5–6 hours to distant wholesale markets (e.g., Bei-
jing) and sell to local distributors. These business model variants also exist in
other areas, such as the fishery industry. In Chinese restaurants, many slap-up
aquatic products (such as sturgeon, salmon, lobster, and abalone) are usually or-
dered by the restaurants and then transported by the supplier via a home-delivery
or doorstep service; whereas many ordinary breeds (such as grass carp, herring,
catfish, and snakehead) are normally purchased directly from local wholesale
markets.

Following Cachon (2004), in this article we call the two variants of business
models as pull and push scenarios respectively; a detailed description of them will
be provided in the next section. Note that Cachon (2004) studies how the allocation
of inventory risk (via push, pull, and advance-purchase discount contracts) impacts
supply chain efficiency. They do not, however, study the perishability of the prod-
uct. Therefore, to a certain degree, this article can be viewed as an extension of
his work by considering product perishability. From the gaming perspective, to
maximize profits in the pull model, the distributor acts as a Stackelberg game
leader (and the producer acts as a follower), whereas in the push model the pro-
ducer acts as a Stackelberg game leader (and the distributor acts as a follower).
Normally, it is expected that being a game leader could provide an advantage; in
other words, the distributor may prefer the pull model whereas the producer may
prefer the push model. Then, if we consider the potential product decay during
transportation undertaken by the upstream producer, it is natural to ask: What is
the difference between the pull and push models? Or more specifically, how should
the supply chain members determine the optimal shipping quantity, order quan-
tity, and pricing decisions in different business models? Why do these variants of
business models co-exist in practice? Is it because one of the business models is
more beneficial to any of the supply chain members? These are some key issues
that may be of interest to companies involved in fresh-product supply chains.
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The main purpose of this article is to seek answers to the aforementioned
issues. We will focus on a stylized supply chain that consists of a single upstream
supplier and a single downstream firm. For convenience, we call the upstream
and downstream firms the producer and distributor, respectively. The producer is
responsible for transporting the products to a distant market where the distributor is
located. Therefore, the producer bears the transportation risk, whereas the risk from
market demand is borne by the distributor. Differing on whether the distributor
orders before or after the producer transports the products, we characterize the
variants of practices with the following two business models (a more detailed
illustration of the models will be given in the next section).

(i) In the pull model, the flow of inventory is triggered by an order from a
downstream distributor. That is, the distributor orders first, then the pro-
ducer determines the shipping quantity, considering the possible product
decay during transportation, and then transports the product to the desti-
nation market of the distributor.

(ii) In the push model, the flow of inventory starts with the producer proactively
shipping products. That is, the producer first ships a batch of products to
the distant wholesale market, and then the distributor purchases and resells
to the retail market.

By considering a price-sensitive end-customer demand, we will first study
the optimal decisions for the supply chain members under the two business models,
which include the shipping quantity of the producer, and the order quantity and
retail price of the distributor. We then provide an in-depth comparison of the
optimal performance under the two business models. Based on the managerial
insights obtained from the analysis, we will develop modified business models that
could help improve the performance of supply chain members.

Our research falls under the field of inventory and supply chain management
of perishable products, a topic that has been studied extensively in the literature.
Early work on a perishable inventory problem was described by Whitin (1957),
where fashion goods deteriorating at the end of certain storage periods were consid-
ered. Since then, considerable attention has been focused on this line of research.
Nahmias (1982) provides a comprehensive survey of research published before
the 1980s. More recent studies on deteriorating inventory models can be found in
the surveys of Raafat (1991) and Goyal and Giri (2001), which review relevant
literature published in the 1980s and 1990s, respectively. It is widely recognized
that the effect of product perishability is two-fold: on the one hand, product quality
and value may degrade over time, and on the other hand, the marketable (or sur-
viving) quantity decreases because some portion of the product may be damaged
and become unsaleable (e.g., Goyal & Giri, 2001; Blackburn & Scudder, 2009).
Of particular relevance to our study are models that deal with quantity losses. In
the literature, quantity loss is generally modeled with a probability distribution.
For example, Ghare and Schrader (1963) developed an EOQ model for products in
which the number of usable units is subject to exponential decay. Covert and Philip
(1973) and Philip (1974) used the Weibull distribution to model item deterioration.
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Tadikamalla (1978) examined the case of Gamma distributed deterioration. Cai
et al. (2010) used a general distribution to characterize the random marketable
portion of a batch of products.

Being highly perishable, fresh products create even greater challenges for
managers seeking to match supply with demand. Therefore, inventory management
and other pertinent management issues of fresh produce have recently attracted
the interest of researchers. For example, Zuurbier (1999) investigated factors that
influence vertical coordination in the fresh produce industry. Ferguson and Ket-
zenberg (2006) examined the value of information sharing between retailers and
suppliers of fresh products. Ferguson and Koenigsberg (2007) recently presented
a two-period model where the quality of the leftover inventory is often perceived
to be lower by customers, and the firm can decide to carry all, some, or none of
the leftover inventory to the next period. Blackburn and Scudder (2009) examined
supply chain design strategies for fresh produce, using melons and sweet corn
as examples. Cai et al. (2010) studied the optimization and coordination of fresh
product supply chains considering freshness-keeping effort as a decision variable.
Focusing on the distribution link of fresh product supply chains, Bolton and Liu
(2006) examined the cold supply chain in China from five perspectives: principal
challenges, recent developments, new market drivers, key success factors, and im-
plementation considerations. Cattani, Perdikaki, and Marucheck (2007) explored
the degree of product perishability’s influence on profitability by considering two
competing online grocers.

Differing from conventional supply chain models that only consider uncer-
tainties associated with market demand, our model also considers risks that arise
from product decay during transportation. As such, both the product supply and
demand involve uncertainties, which creates great difficulties in matching supply
with demand. In this respect, our work is also related to the body of literature on
random yield and/or unreliable suppliers. Yano and Lee (1995) reviewed previous
studies of lot-sizing models when production or procurement yields are random.
Researchers have used different functions to characterize the reliability of supplies.
These include “all-or-nothing delivery” (e.g., Anupindi & Akella, 1993; Gerchak,
1996), random capacity (e.g., Ciarallo, Akella, & Morton, 1994), binomial yield
(e.g., Chen, Yao, & Zheng, 2001), stochastic proportional yield (e.g., Henig &
Gerchak, 1990), and combinations of these different functions (e.g., Wang & Ger-
chak, 1996). For comparisons of different models, refer to the recent work by
Dada, Petruzzi, and Schwarz (2007), who considered the problem of a newsven-
dor served by multiple suppliers, where any given supplier may be unreliable. In
this article, we adopt the stochastic proportional yield model to characterize the
surviving quantities of the products.

The remainder of the article is organized as follows. In the next section we
will present the problem descriptions, assumptions, and notation. After that we will
derive the optimal decisions for the producer and the distributor in the two business
models and conduct a comparative analysis between them. We will then explore
extended business models that could improve the performance of the producer
and the distributor. Some results from the numerical experiments will be reported
before we conclude the article.
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Figure 1: The two business models under consideration.

THE MODELS

Like Cai et al. (2010), we consider a supply chain consisting of one producer and
one distributor (Figure 1). The distributor purchases from the producer and sells
to end customers that are geographically far from the production base; therefore
products must undergo long-distance transportation before reaching the market.
Due to high perishability, a portion of the products being shipped may decay during
the transportation process. That is, the marketable quantity at the destination will
be less than or equal to that loaded onto the transportation vehicle. We introduce
a random surviving index, �, defined over [0, 1] to model the perishability of
products, with � = 1 and 0 representing, respectively, 100% and 0% of the
product surviving when it reaches the market. Note that the realization of � may
be jointly determined by the actual transportation time, the weather condition, the
effectiveness of cooling facilities, and other unforeseen factors. Suppose � follows
a continuous distribution, with PDF f (·), CDF F(·), and mean value μ = E{�} (0
< μ < 1).

Let the unit production cost and transportation cost be c1 and c2, respectively;
and let the wholesale price charged by the producer be w(>c1 + c2), which is
exogenous. Following Petruzzi and Dada (1999), Wang (2006), and Wang, Jiang,
and Shen (2004), we adopt the multiplicative functional-form; in other words,
given that the distributor charges a retail price p, the market demand is given by

D(p) = y0p
−kε, k > 1,

where y0 is a constant, k is the price elasticity, and ε is a random variable represent-
ing the random fluctuations of the market demand. To avoid trivial cases, we focus
on a price-sensitive market and therefore assume k > 1. Let the PDF and CDF of
ε be g(x) and G(x), respectively. In addition, we make the following assumption:

Assumption 1: The random factor ε has an increasing generalized failure rate:
h(x): =xg(x)/[1 − G(x)] is increasing in x ∈ (0, +∞); and limx→∞x[1 − G(x)] =
0.
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The increasing generalized failure rate (IGFR) condition is a mild restriction
on the demand distribution. IGFR is a weaker condition than increasing failure rate
(IFR)—a property satisfied by many distributions such as truncated normal, uni-
form, and the gamma and Weibull families, subject to parameter restrictions (see
Lariviere & Porteus, 2001; Mookherjee & Friesz, 2008; and references therein).
The condition limx→∞x[1 − G(x)] = 0 is satisfied by the aforementioned distribu-
tion functions.

Consider the scenarios in which the producer is responsible for the trans-
portation process (therefore any loss from product decay will be borne by the
producer). With long-distance transportation involved, multiple forms of transac-
tion exist between the producer and the distributor. We consider the following two
business models, depending on whether the distributor orders and purchases before
or after the products are transported to the distant market (Figure 1).

(i) In the pull model, the transaction is similar to the cost insurance and
freight scheme that is used widely in foreign trades. In this model, the
flow of inventory is triggered by an order from a downstream distributor.
That is, the distributor first places an order requesting q units of product.
Considering potential product decay during transportation, the producer
chooses shipping quantity, Q, which may be greater than that ordered by
the distributor, and transports it, either by its own vehicle or by third-party
logistics providers, to the distant market designated by the distributor.
There are two possible outcomes after transportation: (a) If the surviving
quantity of the producer is no less than q, then the distributor obtains all
the product that he has ordered; (b) otherwise, the producer will be unable
to fulfill the entire order of the distributor, and the maximal quantity that
the distributor can obtain is constrained by the surviving products. In
both cases, after the transaction between the two parties is conducted, the
distributor sets a retail price, denoted by p, for sales to end customers.

(ii) In the push model, the flow of inventory starts with the producer proactively
shipping products, “pushing” them from upstream to downstream along
the supply chain. That is, the producer first determines the quantity (Q)
to be shipped and transports the products to a distant wholesale market,
where the distributor decides on the purchase quantity (q) based on a pre-
negotiated wholesale price (w), with the maximal quantity constrained by
the producer’s surviving quantity. Meanwhile, the distributor sets a retail
price, denoted by p, for sales to end customers.

In summary, the distributor orders before transportation in the pull model,
whereas orders are done after transportation in the push model. We have the
following assumption.

Assumption 2: The wholesale price of the producer is greater than c1+c2
μ

(i.e.,

w > c1+c2
μ

).

To illustrate the reasoning behind this assumption, suppose the producer
ships one unit of product in either business model. Note that the mean value of
� can be interpreted as the probability that the unit of product will survive, and
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(1 − μ) is the probability that it becomes unsaleable. Therefore, the producer’s
expected revenue from selling this unit of product is given by μw, and the cost
is c1 + c2. We need the condition presented in Assumption 2 to ensure that the
producer is willing to ship at least one unit of product; otherwise, the transaction
between the producer and the distributor will be uneconomic for the producer.

For both business models, the optimal decisions of each party are made by
considering the best response of the other party. To facilitate the characterization
of optimal decisions, we assume that all information is common knowledge to both
supply chain members. Following the convention in the literature, both parties are
assumed to be risk-neutral; they seek to maximize their respective expected profit.
Finally, to simplify the model, we do not consider any salvage value of the products
left unsold (recall that the product is highly perishable). That is, even if the actual
delivery amount is larger than the purchase quantity requested by the distributor, the
producer generates a zero revenue from the surplus inventories because she cannot
sell them to the end-market; and after all the end-market demands are realized, the
distributor obtains a zero salvage value from any remaining inventories as well.

Throughout the article, we use subscript “c” and “s” in the decision variables,
and superscript “c” and “s” in the profit functions to denote the pull model and
push model, respectively.

OPTIMAL DECISIONS

Before investigating the respective optimal decisions for the two business models,
it should be noted that in both models, the distributor eventually faces the problem
of setting an optimal retail price (p), which may depend on the on-hand inventory
level. Because the purchasing cost paid to the producer is regarded as sunk, the
distributor needs to optimize the retail price from maximizing his expected selling
revenue. Suppose the distributor’s marketable quantity is q, thus his expected
selling revenue as a function of the retail price p is

Rd (p | q) = E{p min(D(p), q)} = pE{min(y0p
−kε, q)}.

The optimal retail price is presented in the following Lemma.

Lemma 1: Given that the distributor’s on-hand inventory level is q, the optimal
retail price, which is a function of q, should be set at

p∗(q) =
(

z0y0

q

)1/k

, (1)

where z0 is uniquely determined by

(k − 1)
∫ z

0
xg(x)dx = z[1 − G(z)]. (2)

Proof : Following Petruzzi and Dada (1999), we define z : = q/[y0p−k] and call
it the stocking factor. Then the distributor’s revenue function Rd(p | q) can be
rewritten as
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Rd (z | q) = (zy0)1/kq1−1/k

(
1 −

∫ z

0
(1 − x/z)g(x)dx

)
.

The optimal stocking factor that maximizes Rd(z | q) must satisfy the following
first-order condition:

dRd (z | q)

dz
= y

1/k
0 q1−1/k

z1−1/kk

(
1 −

∫ z

0

[
x

z
(k − 1) + 1

]
g(x)dx

)
= 0;

from this we can show that the optimal stocking factor z0 must satisfy Equation (2).
We next prove the uniqueness of z0. Let

φ(z) :=
∫ z

0
[x(k − 1) + z]g(x)dx − z = −zḠ(z) + (k − 1)

∫ z

0
xg(x)dx,

where Ḡ(z) := 1 − G(z). Then we have

φ′(z) =
∫ z

0
g(x)dx + zkg(z) − 1 = zkg(z) − Ḡ(z) = kḠ(z)

[
h(z) − 1

k

]
.

Note that by Assumption 1, the generalized increasing failure rate function
of ε, h(x) is increasing, therefore φ(z) decreases before z reaches h−1(1/k) and
increases after h−1(1/k), and hence is unimodal. As φ(0) = 0 and limz→∞φ(z) >

0, it is apparent that φ(z) = 0 has only one solution within (0, ∞); therefore, z0

is uniquely determined by Equation (2). It’s trivial that for z > z0, φ(z) > 0 and
thus R′

d (z | q) < 0; for z < z0, φ(z) < 0 and thus R′
d (z | q) > 0. Therefore, Rd(z | q)

is unimodal in z, and z0 is the unique maximizer of Rd(z | q). This completes the
proof. �

Lemma 1 gives a closed-form solution for the optimal retail price. From
Equation (1) we know that the distributor should decrease the retail price when there
is more inventory; this is consistent with our intuition. Substituting Equation (1)
into Rd(p | q), we obtain the optimal retail revenue as

R∗
d (q) := Rd (p∗(q) | q) = k

k − 1
Ḡ(z0)(z0y0)1/kq1−1/k := k

k − 1
Aq1−1/k, (3)

where for notational simplicity, we let the constant A = Ḡ(z0)(z0y0)1/k .

Optimal Decisions for the Pull Model

We summarize the sequence of key events that occur in the pull model as follows.
(i) The distributor determines the order quantity qc; (ii) the producer determines
the shipping quantity Qc and transports the products; (iii) the distributor receives
the products and determines the retail price pc; and (iv) customer demand is
realized and satisfied. Note that Lemma 1 already presents the optimal retail
pricing decision; we will solve the other decision problems for the two parties in
backwards order.

First, given that the producer receives an order quantity of qc units from the
distributor, the producer may have to ship more than qc units of product, because
some portion of the product may decay before it arrives at the distant market. On
one hand, the producer has to ship more inventory to avoid any supply shortage;
on the other hand, over-shipping is also less desirable, because limited revenues
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will be realized, and will incur a loss to the producer. The trade-off between the
benefits and costs of over-shipping must be managed to maximize the producer’s
expected profit.

The expected profit function of the producer with respect to the shipping
quantity Qc is as follows:

�c
p(Qc | qc) = E{w min(qc, Qc�) − (c1 + c2)Qc}

= wqc − (c1 + c2)Qc − w

∫ qc/Qc

0
(qc − Qcx)f (x)dx. (4)

Theorem 1: In the pull model, given that the distributor orders qc, the producer’s
optimal shipping quantity is given by Q∗

c (qc) = qc/θc, where θ c equals θ0, the
unique solution for the following equation:∫ θ0

0
xf (x)dx = c1 + c2

w
. (5)

Proof : The first derivative of �c
d (Qc | qc) is

d�c
p(Qc | qc)

dQc

= w

∫ qc/Qc

0
xf (x)dx − (c1 + c2),

which is decreasing in Qc. Therefore, �c
p(Qc | qc) is concave, and the optimal

shipping quantity should be determined by the first order condition, from which
we have Q∗

c (qc) = qc/θc, where θ c solves Equation (5). Note that for ∀θ > 0,
0 <

∫ θ

0 xf (x)dx ≤ E{�} = μ. By Assumption 2, we know that the right-hand
side of Equation (5), c1+c2

w
< μ; therefore the solution to Equation (5) exists in (0,

1) and is unique. This completes the proof. �
Note that we have 0 < θ c < 1, therefore 1/θ c can be regarded as an “inventory-

plus” factor and (1/θ c − 1)qc is the extra quantity added to cater for the transporta-
tion risk. The “service level” of the producer, defined as the probability that the
distributor’s entire order is satisfied, is given by

Pr{Q∗
c (qc)� ≥ qc} = Pr

{
qc

θc

� ≥ qc

}
= Pr{� ≥ θc} = F̄ (θc). (6)

Theorem 1 shows that θ c is decreasing in w; this implies the intuitive re-
sult that when the opportunity cost from supply shortage is high, the distributor
should increase the inventory-plus factor and service level to avoid losses that
may arise from supply shortage. Moreover, Theorem 1 illustrates the reasonable-
ness of Assumption 2: the first derivative of �c

d (Qc | qc) is always non-positive
if w ≤ c1+c2

μ
(i.e., �c

p(Qc | qc) is non-increasing in Qc) and therefore the optimal
shipping decision is Q∗

c = 0.
Substituting Equation (5) into Equation (4), the producer’s optimal profit for

a given ordering quantity qc is

�c
p(Q∗

c (qc) | qc) = wqc[1 − F (θc)], (7)
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which is proportional to the distributor’s ordering quantity (note that θ c is inde-
pendent of qc). Because 1 − F(θ c) > 0, the producer’s expected profit will always
be positive. Therefore, as expected, the producer always prefers a larger order
quantity from the distributor.

Knowing that the producer will ship 1/θ c times the quantity being ordered, the
distributor determines his order quantity, considering the possible amount that may
be received (which is constrained by the producer’s surviving quantity Q∗

c (qc)�).
It is readily shown that only when � ≥ θ c (with probability 1 − F(θ c)), could the
producer fulfill the distributor’s entire order. By incorporating the optimal retail
price decision (Lemma 1) and the corresponding retail revenue (Equation (3)), and
conditioning on the random surviving factor �, we write the distributor’s expected
profit as follows:

�c
d (qc) = E{R∗

d (min(qc, Q
∗
c (qc)�)) − wqc + w(qc − Q∗

c (qc)�)+}
= −wqc + k

k − 1
Aq1−1/k

c F̄ (θc)

+
∫ θc

0

[
kA

k − 1

(
qc

θc

x

)1−1/k

+ wqc

(
1 − x

θc

)]
f (x)dx, (8)

where x+ := max (x, 0), and the three items on the right-hand side of the first
line correspond to the distributor’s retail revenue, the wholesale cost paid to the
producer, and the wholesale refund from the producer, respectively.

Theorem 2: In the pull model, the distributor’s expected profit function is concave,
and his optimal order quantity is

q∗
c =

(
A

w
�(θc)

)k

, (9)

where function �(·) is defined as

�(θ) :=

∫ θ

0

(x

θ

)1−1/k

f (x)dx + F̄ (θ)∫ θ

0

x

θ
f (x)dx + F̄ (θ)

.

Proof : Taking the first derivative of �c
d (qc) with respect to qc, we have

d�c
d (qc)

dqc

= −w + AF̄ (θc)q−1/k
c

+
∫ θc

0

[
A

(
x

θc

)1−1/k

q−1/k
c + w

(
1 − x

θc

)]
f (x)dx,

which is decreasing in qc (recall that we have assumed k > 1). Therefore, �c
d (qc)

is concave and has a unique maximum. By applying the first order condition, we
arrive at Equation (9). This completes the proof. �
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Theorem 2 implies that the distributor’s order quantity is mainly determined
by function �(θ c). Because k > 1, and θ c > 0, it is not difficult to show that

�(θc) : =

∫ θc

0

(
x

θc

)1−1/k

f (x)dx + F̄ (θc)∫ θc

0

x

θc

f (x)dx + F̄ (θc)

= 1 +

∫ θc

0

[(
x

θc

)1−1/k

− x

θc

]
f (x)dx

∫ θc

0

x

θc

f (x)dx + F̄ (θc)

> 1.

As a result, we know that

q∗
c > (A/w)k , (10)

where the right-hand side can be readily shown to be the optimal order quantity
when the product is non-perishable during transportation (i.e., when the supply is
reliable). Therefore, the perishability of products tends to motivate the distributor to
order more. Moreover, it is not difficult to show that function �(θ) is increasing in
θ . Therefore Equation (9) implies that the distributor tends to order more knowing
the producer will choose a smaller inventory-plus factor ( 1

θ
) because the supply

becomes less reliable.
By considering the distributor’s optimal order quantity (Theorem 2), we

summarize the optimal performance for the two supply chain members in the pull
model. The producer’s optimal profit is

�c∗
p := �c

p(Q∗
c (q∗

c ) | q∗
c ) = Akw1−k�k(θc) [1 − F (θc)] ; (11)

and the distributor’s optimal profit is

�c∗
d := �c

d (q∗
c ) = 1

k − 1

(
A�(θc)

w

)k [
w [1 − F (θc)] + c1 + c2

θc

]
. (12)

From Equations (11) and (12), we have the following ratio:

�c∗
d

�c∗
p

= 1

k − 1

⎡
⎢⎢⎣1 +

∫ θc

0
xf (x)dx

θcF̄ (θc)

⎤
⎥⎥⎦ ,

which is clearly decreasing in k. This implies that the distributor will obtain a
larger portion of the entire-chain profit when market demand is less price-sensitive
(i.e., when k is small). To illustrate, consider an extreme case in which demand is
almost insensitive to a change in price (i.e., k → 1). Then naturally the distributor
could set a sufficiently high retail price without affecting the magnitude of market
demand. Thus, most supply-chain profit is obtained by the distributor, because the
unit profit of the producer is limited (note that her unit profit is w − c1 − c2).
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Optimal Decisions for the Push Model

In the push model, the sequence of events is as follows. (i) The producer determines
the shipping quantity Qs and transports it to the distant wholesale market; (ii) the
distributor determines the joint decisions on purchasing quantity qs and retail
price ps, considering the producer’s available supply; and (iii) customer demand is
realized and satisfied. We solve the decision problems for the two parties in reverse
order.

Firstly, given that the producer has shipped Qs units of products and the
realized surviving factor after transportation is θ , the distributor jointly determines
his purchasing quantity (at wholesale price w) and retail price, with the objective
of maximizing his expected profit. Putting aside the capacity constraint, we first
investigate the distributor’s profit function, which is formulated as

�s
d (qs, ps) = E {ps min(qs, D(ps)) − wqs}

= −wqs + psE
{
min

(
qs, y0p

−k
s ε

)}
.

(13)

From Lemma 1, we know that for any optimal solution that maximizes
�s

d (qs, ps), the optimal retail price must be p∗
s = p∗(qs). Therefore the distributor’s

profit can be rewritten into a form that only depends on qs:

�s
d (qs) := �s

d (qs, p
∗(qs)) = −wqs + k

k − 1
Aq1−1/k

s . (14)

By taking the first and second derivatives, we can easily show that �s
d (qs)

is concave and its maximal value is achieved at q∗
s = (A/w)k . Incorporating the

producer’s capacity, we immediately arrive at the following theorem.

Theorem 3: In the push model, given that the producer’s marketable quantity is
Qsθ , the distributor’s eventual purchasing quantity is min ((A/w)k, Qsθ).

Knowing that the distributor will eventually order up to (A/w)k, the producer
seeks to maximize her profit by choosing an appropriate shipping quantity. The
producer’s expected profit function is

�s
p(Qs) = E

{
w min

(
Akw−k, Qs�

)− (c1 + c2)Qs

}
= −(c1 + c2)Qs + Akw1−kF̄

(
Akw−k/Qs

)+ w

∫ Akw−k/Qs

0
Qsxf (x)dx.

(15)

Theorem 4: In the push model, the producer’s optimal shipping quantity is
Q∗

s = ( A
w

)k/θs , where θ s equals θ0, the unique solution for Equation (5).

Proof : The first derivative of �s
p(Qs) is

d�s
p(Qs)

dQs

= −(c1 + c2) + w

∫ Akw−k/Qs

0
xf (x)dx,

which is decreasing in Qs. Therefore, �s
p(Qs) is concave; the optimal shipping

quantity should be determined by the first-order condition, from which we have
Q∗

s = ( A
w

)k/θs , where θ s solves Equation (5). This completes the proof. �
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From Theorem 3, when the wholesale price offered by the producer is high,
the distributor will purchase less. On the other hand, Theorem 4 shows that the
“inventory-plus” factor (over the maximal quantity that the distributor purchases)
in the push model, 1/θ s, is increasing in w. Therefore, what is the overall impact
of the wholesale price on the producer’s optimal shipping quantity? To answer this
question, we first take derivatives with respect to w on both sides of Equation (5)
and arrive at the following:

dθs

dw
= dθ0

dw
= −c1 + c2

w2
× 1

θsf (θs)
= − 1

wθsf (θs)

∫ θs

0
xf (x)dx.

Therefore we have,

dQ∗
s

dw
= −kAkw−k−1

θs

− Akw−k

θ2
s

× dθs

dw

= −Akw−k−1

θs

{
k −

∫ θs

0
xf (x)dx

/
θsf (θs)

}
.

Note that θ s is independent of the price elasticity, k. The above equation shows that
the relationship between Q∗

s and w depends on the value of k: when k is large (i.e.,
k > ∫θs

0 xf (x)dx
/
θsf (θs)), Q∗

s is decreasing in w; on the other hand, when k is
small (i.e., k < ∫θs

0 xf (x)dx
/
θsf (θs)), Q∗

s is increasing in w. This is because when
demand is more price-sensitive, the maximal quantity the distributor is willing to
purchase decreases more steeply in w; whereas the inventory-plus factor is less
sensitive to changes.

Next, we summarize the optimal profits for the supply chain members in the
push model. By substituting Theorem 4 into Equation (15), we obtain the optimal
performance for the producer as follows:

�s∗
p = �s

p(Q∗
s ) = −(c1 + c2)

Akw−k

θs

+ Akw1−kF̄ (θs) + w

∫ θs

0

Akw−k

θs

xf (x)dx

= Akw1−kF̄ (θs). (16)

Conditioning upon the surviving factor �, we arrive at the expected profit
for the distributor:
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�s∗
d =

∫ θs

0
�s

d (Q∗
s x)f (x)dx +

∫ θs

0
�s

d (Akw−k)f (x)dx

= 1

k − 1
Akw1−kF̄ (θs) + Akw1−k

θs

∫ θs

0

[
−x + k

k − 1
θ1/k
s x1−1/k

]
f (x)dx.

(17)
Note that in the conventional newsvendor problem where supply is 100%

reliable, the optimal profit of the downstream distributor is always lower if the
upstream supplier charges a higher wholesale price. However, as Equation (17)
shows, the distributor’s optimal profit in the push model may not necessarily be
strictly decreasing in w; this is because a lower w may induce the producer to ship
less product (recall that the inventory-plus factor 1

θs
is increasing in w) and as a

result, the distributor faces an even more unreliable supplier.

Pull versus Push Models

Having obtained the optimal decisions for the pull and push models in the previous
subsections, we now conduct a comparison between the two models. We first
remark that if the product is not perishable during transportation, then the optimal
decisions and optimal expected profit under the pull and push models will be
exactly the same, because the producer will always choose an inventory-plus
factor of 1. Therefore, the differences between the two models can be attributed to
the possibility of product decay during the distribution chain.

First, Theorems 1 and 4 show that the producer will choose the same
inventory-plus factor under the two models (recall that θ c = θ s = θ0). This is
because the choice of inventory-plus factors is based on the trade-off between the
shortage cost (w) and over-stocking cost (c1 + c2). Given that the parameters are
assumed the same for the two models, the decision is independent of how much
the distributor orders.

Nevertheless, as Theorems 2 and 3 show, the distributor may choose a dif-
ferent order quantity for the different models. We have shown that �(θ0) > 1,
therefore clearly we have

q∗
c > q∗

s and Q∗
c > Q∗

s .

This means that in the pull model, the distributor will order more and therefore
the producer will ship more products. To illustrate the reasoning behind this, we
consider the distributor’s expected profit as a function of the producer’s available
inventory for the two models (Figure 2). Note that the distributor’s unconstrained
expected profit function is concave (as the dashed lines show), with the maximal
value being achieved at (A/w)k; therefore, the bold line in Figure 2(a) characterizes
the distributor’s profit corresponding to any available inventory level for the push
model in which the distributor will order up to (A/w)k. Due to the unreliability of
supplies, the expected profit should always be less than the maximal value of the
profit curve.

Next, consider the pull model in which the distributor reveals his order
quantity before the producer makes the shipment. This time, the distributor gains
some power in influencing the producer’s shipping quantity. By increasing the
order quantity from (A/w)k to (A�(θ0)/w)k, the distributor shapes his profit curve
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Figure 2: Illustration of distributor’s expected profits.

into the form in Figure 2(b). As was shown, the distributor will obtain an even
lower profit (than the maximal achievable profit) if the producer satisfies his entire
order. However, the overall expected profit might be increased.

Proposition 1: Compared with the push model, both the producer and the distrib-
utor will achieve a higher expected profit if they choose the pull model. That is,
we have �c∗

p > �s∗
p and �c∗

d > �s∗
d .

Proof : Note that θ c = θ s = θ0 and �(θ0) > 1; from Equations (11) and (16) we
clearly have �c∗

p > �s∗
p . To compare �c∗

d with �s∗
d , we first make some transfor-

mations on �s∗
d . By the definition of �(θ) and θ0, we have∫ θ0

0

(
x

θ0

)1−1/k

f (x)dx = [�(θ0) − 1]F̄ (θ0) + �(θ0)
c1 + c2

θ0w
;

substituting this into Equation (17), yields

�s∗
d = 1

k − 1
Akw1−kF̄ (θs) + Akw1−k

θs

∫ θs

0

[
−x + k

k − 1
θ1/k
s x1−1/k

]
f (x)dx

= 1

k − 1

(
A

w

)k

(k�(θ0) − k + 1)

[
wF̄ (θ0) + c1 + c2

θ0

]
.

Therefore, to show �c∗
d > �s∗

d , we need only prove:

�k(θ0) > k�(θ0) − k + 1. (18)

Define function

Y (ω) := ωk − kω + k − 1, ω ≥ 1,

whose first derivative is Y ′(ω) = kωk−1 − k. Therefore, Y ′(ω) is positive for ∀ω >

1 (recall k > 1). As a result, Y(ω) strictly increases within the interval [1, +∞).
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Figure 3: Distributor’s expected profit as a function of the surviving factor.

Therefore, Y(ω) > Y(1) = 0 for ∀ω > 1; this means that inequality (18) holds
(because �(θ0) > 1). This completes the proof. �

Therefore, compared with the push model, the distributor benefits from in-
creasing his order quantity in the pull model. We plot the distributor’s profits as a
function of the producer’s realized surviving factor in Figure 3 for the two business
models.

As can be seen, although the distributor has greater likelihood of achieving
the maximal obtainable profit (denoted as π1) in the push model (in the pull model,
the probability of obtaining profit π1 is zero), he has an even larger probability
of realizing the sub-maximal profit (denoted as π2) in the pull model (note that
the probability of achieving at least π2 profit are F̄ (θ2) and F̄ (θ1) for the push
and pull models, respectively). Therefore, it seems that the distributor, who acts
as a Stackelberg game leader in the pull model, has a more conservative attitude
towards risk.

Recall that the above results are obtained by considering a price-dependent
market. For certain fresh products, the retail price might be fairly rigid, for example,
when it is regulated by the government. Interestingly, we find that when the market
demand is price-independent (i.e., when the retail price is exogenous), the major
findings still hold. That is, the producer will still ship more products in the pull
model, and as a result, the producer and distributor are both better off.

IMPROVING SUPPLY CHAIN PERFORMANCE

As demonstrated, in either business model, when the producer’s surviving quantity
is greater than the amount that has been or will be ordered by the distributor at
wholesale price w, the surplus inventory means a loss for the producer because
it collects hardly any revenue for the producer (recall that we have assumed zero
salvage value); instead, it consumes both production and transportation costs.
Clearly, the producer will be better off if the products could be sold at any positive
price. On the distributor’s side, if he compensates the producer for any redundant
inventory, for example, by buying the surplus inventory at a reasonably low price,
he might be able to increase profit as well. Thus, the natural question is whether
the two supply chain members could increase their respective profits by coming
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to a compensation agreement on the surplus inventory, and if so, how should the
producer price the surplus inventory.

We will answer these questions and explore the possibilities of improving the
supply chain performance by developing appropriate contracts in this section. The
rest of this section is organized as follows. In the first subsection, we explore the
profit impact from offering a secondary transaction after the primary transaction
between the distributor and producer has already been conducted. We show the
so-called “compensation contract” is beneficial to both parties; this motivates us
to study an extended business model with compensation in the second subsection.
Unfortunately, when the distributor can expect a secondary transaction opportunity,
he may order quite a lot less in the primary transaction and therefore harm the
benefit of the producer. As a result, the proposed extended model may not be
acceptable to both parties. Therefore, in the third subsection we propose and
investigate another strategy called “fixed inventory-plus factor,” which is shown
to be incentive compatible and a Pareto improvement.

A Compensation Contract in the Second Period

Suppose when the products arrive at the distant market, the total marketable quan-
tity is Qθ . Now the producer has fulfilled the distributor’s order of q units (at
wholesale price w) and has Qθ − q > 0 units of surplus inventory. The producer
needs to determine a unit compensation rate, w̃, for any surplus inventory; she will
then offer to sell the (Qθ − q) units of products to the distributor at a possibly
discounted price w̃.

We first investigate the distributor’s response to the opportunity to acquire
surplus inventory. Suppose the distributor is willing to purchase q̃ more products
at compensation rate w̃. By having total quantity of q + q̃ units for resale to end
customers, his expected retail revenue is R∗

d (q + q̃); therefore, the distributor’s
profit as a function of q̃ is

R∗
d (q + q̃) − wq − w̃q̃ = k

k − 1
A(q + q̃)1−1/k − wq − w̃q̃,

which is readily shown to be concave in q̃, and the optimal q̃ that maximizes the
above profit is given by

q̃∗ = max

(
0,

(
A

w̃

)k

− q

)
;

that is, only when the compensation rate offered by the producer is lower than
Aq−1/k, is the distributor willing to purchase more inventory; and by purchasing
q̃∗ more units at w̃, the distributor actually increases his profit.

Next, knowing that the distributor will purchase q̃∗ units, the producer
chooses a best compensation rate to maximize her added revenue, which is formu-
lated as:

w̃ min(q̃∗, Qθ − q) =

⎧⎪⎨
⎪⎩

w̃(Qθ − q) if w̃ ≤ A(Qθ)−1/k;

Akw̃1−k − qw̃ if A(Qθ)−1/k ≤ w̃ ≤ Aq−1/k;

0 if w̃ ≥ Aq−1/k.
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Table 1: Benefit from compensation in the presence of surplus inventories.

Distributor Producer

Without ST k
k−1Aq1−1/k − wq wq

With ST 1
k−1A(Qθ )1−1/k

+ Aq(Qθ )−1/k − wq

wq + A(Qθ )1−1/k − Aq(Qθ )−1/k

Profit improvement 1
k−1A(Qθ )1−1/k

+ Aq(Qθ )−1/k − k
k−1Aq1−1/k

A(Qθ )−1/k[Qθ − q]

This revenue function increases in the interval [0, A(Qθ)−1/k] and decreases
in the interval [A(Qθ)−1/k, +∞]; in other words, the function is unimodal and has
a unique maximizer. The producer’s optimal compensation rate should be set at

w̃∗(Qθ) = A(Qθ)−1/k,

at which point the distributor is willing to purchase all surplus inventory. It is
interesting to note that the optimal compensation rate only depends on the total
marketable quantity of the producer, whereas it is independent of the quantity
ordered by the distributor. Recall that the distributor’s order quantities in the pull
and push models are both no less than (A/w)k. Therefore, we have

w̃∗(Qθ) = A(Qθ)−1/k < Aq−1/k ≤ w;

in other words, the unit compensation rate is a discount over the original wholesale
price w.

We summarize the corresponding profits of the supply chain members for
the scenarios with/without a compensation contract in Table 1. As expected, both
parties will increase their respective profits from the offering of surplus inventory at
a discounted price. Note that the conclusion is drawn for any given order quantity
q and shipping quantity Q. What if the distributor can optimize his first order
quantity q by expecting a future secondary transaction? More specifically, if both
the producer and the distributor have expected a compensation opportunity, will
they alter their ordering and shipping quantity decisions? If so, will they always
benefit from the compensation opportunity? In the following we will study an
extended business model to answer these questions.

An Extended Business Model with Compensation

The extended model is described as follows: Given a wholesale price of w, the
distributor first places a primary order requesting q units of products, considering
the possibility of obtaining surplus inventory at a possibly discounted price, and the
possibility of shortage supply from the producer. Then, the producer determines a
shipping quantity Q (Q > q) and loads them onto the transportation vehicle. After
the products arrive at the destination market and the observation of the surviving
index, θ , the following will occur: (i) if surviving quantity is less than or equal
to q, then a supply shortage has occurred and the distributor gets all marketable
inventory at wholesale price w; and (ii) if the surviving quantity is greater than q,
then the producer satisfies the distributor’s primary order of q and sells the surplus
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(Qθ − q) units at price w̃∗(Qθ) to the distributor. Finally, the distributor sells the
products to end customers at an optimized retail price.

Note that by ordering q units before transportation, the distributor is “pulling”
some inventory from the producer; on the other hand, when the surviving quantity
exceeds q, the producer is “pushing” the surplus inventory to the distributor. From
the viewpoint of the entire supply chain, the extended model does not waste any of
the surplus inventory and therefore might be more efficient than the pull or push
model. However, compared with the pull model, will both parties surely be better
off in the extended model? We will look into the question briefly.

We investigate the optimal decisions in the extended model in backwards
order. First, knowing that she could sell all surplus inventory at price w̃∗(Qθ), the
producer’s expected profit as a function of her shipping quantity Q is

�p(Q | q) = E{w min(q, Q�) + w̃∗(Q�)[Q� − q]+ − (c1 + c2)Q}

= wq − (c1 + c2)Q − w

∫ q/Q

0
(q − Qx)f (x)dx

+
∫ 1

q/Q

A(Qx − q)(Qx)−1/kf (x)dx, (19)

given that the distributor’s primary order quantity is q.

Theorem 5: In the extended business model, given that the distributor’s primary
order quantity is q:

(i) If q = 0, then the producer’s optimal shipping quantity is

Q∗(q) =
(

1

c1 + c2
× k − 1

k
AE{�1−1/k}

)k

; (20)

(ii) Otherwise, the producer’s optimal shipping quantity Q∗(q) = q/θ(q), where
θ(q) is dependent of q and must satisfy

c1 + c2 − w

∫ θ

0
xf (x)dx

= A

k
q−1/kθ

∫ 1

θ

[
(k − 1)

(x

θ

)1−1/k

+
(x

θ

)−1/k
]

f (x)dx. (21)

Proof : To characterize the structure of the producer’s profit, we take the first
derivative of �p(Q | q) with respect to Q:

�′
p(Q | q) = −(c1 + c2) + w

∫ q/Q

0
xf (x)dx

+ A

kQ

∫ 1

q/Q

[(k − 1)(Qx)1−1/k + q(Qx)−1/k]f (x)dx. (22)

(i) If q = 0, the above derivative becomes:

�′
p(Q | q) = −(c1 + c2) + k − 1

k
A

∫ 1

0
Q−1/kx1−1/kf (x)dx,
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Figure 4: Illustration for the solution of Equation (21).

which is decreasing in Q. Therefore, �p(Q | q) is concave, and the optimal shipping
quantity is uniquely determined by the first-order condition, from which we arrive
at Equation (20).

(ii) If q > 0, unfortunately, �′
p(Q | q) may not be monotonously decreasing,

therefore, �p(Q | q) may not be concave or unimodal. As a result, it is possible that
�p(Q | q) has multiple local maximizers. However, it is a necessary condition that
any maximizer (including the global maximizer) must satisfy the first-order condi-
tion, from which we have Q∗(q) = q/θ(q), where θ(q) is a solution of Equation (21).
This completes the proof. �

As Theorem 5 shows, unlike the pull and push models, in the extended
model, the inventory-plus factor (when the distributor places a positive primary
order) is no longer independent of the quantity ordered by the distributor. This
is because her revenue from compensation by distributor is not proportional to q.
From Equation (21), we clearly have

c1 + c2 > w

∫ θ(q)

0
xf (x)dx;

from which we have θ(q) < θ0 (recall Equation (5)). That is, with a secondary
transaction opportunity, the producer prefers a higher inventory-plus factor because
she has less risk in having surplus inventory.

As stated, when the distributor places a positive primary order (i.e., q > 0),
the first-order Equation (21) is only a necessary condition, because the last item
in �′

p(Q | q) as presented in Equation (22) is not decreasing in Q for a general
distribution of � (therefore �p(Q | q) may not be concave). However, for some
common distributions, including the uniform and exponential, the right-hand-side
(RHS) of Equation (21) can easily be shown to be unimodal in θ (see illustrative
Figure 4), with values equal to zero for θ = 0 and θ = 1; whereas the left-hand-side
(LHS) is strictly decreasing in θ , with the values being positive and negative for θ

= 0 and θ = 1, respectively (recall Assumption 2). Therefore, it is intuitive that
Equation (21) has a unique solution. In such cases, when q increases (suppose q
increases to q̂), the RHS becomes flatter (see the dashed line in Figure 4) and the
solution to Equation (21) increases as well (i.e., θ(q̂) > θ(q)). This implies that the
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producer will choose a smaller inventory-plus factor when the distributor requests
more products in the primary transaction.

Next, we turn to investigate the distributor’s primary order quantity, knowing
that the quantity shipped by the producer is Q∗(q). It is seen that all the producer’s
surviving inventory flows to the distributor in the extended model, and the dis-
tributor’s purchasing cost now consists of two parts: that paid at fixed cost w and
that paid at uncertain cost w̃∗(·). Note that by allowing a secondary transaction
opportunity, the distributor is likely to order less than the quantity in the pull model
(even zero quantity). If q < (A/w)k and the surviving quantity Qθ ∈ (q, (A/w)k),
then the compensation rate w̃∗(Qθ) = A(Qθ)−1/k may be even higher than w.

We formulate the distributor’s expected profit as a function of his primary
order quantity q as:

�d (q) = E{R∗
d (Q∗(q)�) − w min(q, Q∗(q)�)+

−w̃∗(Q∗(q)�)(Q∗(q)� − q)+}.
(23)

If q = 0 (i.e., the distributor gambles solely on the secondary transaction
to obtain inventories), the business model reduces to a form similar to the push
model, except that the producer’s wholesale price is no longer fixed at the pre-set
level w; instead, it becomes flexible and random, which depends on the eventual
surviving quantity Qθ . By substituting Equation (20) into Equation (23), we arrive
at the distributor’s profit

�d (0) = 1

k − 1
(c1 + c2)1−k

(
k − 1

k

)k−1

(AE{�1−1/k})k. (24)

If q > 0, we could substitute θ(q) obtained from Equation (21) into Equa-
tion (23) and then optimize �d(q). However, θ(q) does not have a closed-form
formulation and the profit function in Equation (23) becomes more complicated
than the previous form Equation (8). Therefore it is difficult to characterize the
structure of �d(q), although the optimal order quantity q must satisfy the first-order
condition.

Let the distributor’s optimal primary order quantity be

q∗ = arg max
q≥0

{�d (q)}.

First, we must have �d (q∗) > �c∗
d ; the distributor should always benefit

from the secondary transaction. This can be justified from the following. Suppose
in the extended model, the distributor orders q∗

c , the optimal quantity in the pull
model. Then, the shipping quantity chosen by the producer should be greater than
that in the pull model (recall that θ(q∗

c ) < θ0). As a result, the supply becomes
more reliable and the distributor gains extra profit from any surplus inventory, and
intuitively, the overall expected profit of the distributor increases.

However, on the side of the producer, one cannot guarantee that the producer
will always achieve a higher profit than that in the pull model. On the contrary, she
may even be worse off if the distributor chooses a rather low primary order quantity
(e.g., q < (A/w)k). This is because, by allowing compensation, the distributor may
transfer more transportation risks to the producer by ordering less (he knows that
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the producer will still ship a sufficiently large amount of products). Eventually, the
producer may suffer from a profit decrease in the extended model.

A Fixed Inventory-plus Factor (FIPF) Strategy

As analyzed, by offering a secondary transaction at compensation rate w̃∗(·) on
the surplus inventory, the producer may not benefit at all because such an offer
distorts the primary ordering decisions of the distributor. Therefore, the producer
may be reluctant to commit on a secondary transaction without any other clauses.

Recall that in both the pull and push models, the optimal inventory-plus
factors are the same, 1/θ0, which is independent of the order quantity of the
distributor. This motivated us to come up with the FIPF strategy for the producer.
That is, while committing to a secondary transaction opportunity on the possible
surplus inventory, the producer commits to ship 1/θ0 times the quantity ordered
by the distributor. By ensuring this, the producer may prevent the distributor from
ordering less inventory. In this subsection, we investigate the performance of both
parties under the FIPF strategy.

In this model, the producer does not need to decide on her shipping quantities.
The sequence of events is almost the same as that in the extended model, except
that the producer’s shipping quantity is given directly by Q = q/θ0. Given the
response of the producer, the distributor’s profit as a function of his order quantity
is given by

�d (q) = E

{
R∗

d

(
q

θ0
�

)
− w min

(
q,

q

θ0
�

)
− w̃∗

(
q

θ0
�

)(
q

θ0
� − q

)+}

= −wq + kA

k − 1

∫ 1

0

(
q

θ0
x

)1−1/k

f (x)dx

+
∫ θ0

0
w

(
q − q

θ0
x

)
f (x)dx − A

∫ 1

θ0

(
q

θ0
x − q

)(
q

θ0
x

)−1/k

f (x)dx.

The first derivative is

�′
d (q) = Aq−1/k

[∫ 1

0

(
x

θ0

)1−1/k

f (x)dx − k − 1

k

∫ 1

θ0

(
x

θ0
− 1

)(
x

θ0

)−1/k

f (x)dx

]

+
∫ θ0

0
w

(
1 − x

θ0

)
f (x)dx − w,

which is decreasing in q. Therefore, the profit function is concave, and the optimal
order quantity is uniquely determined by the first-order condition. We summarize
the optimal decisions under the FIPF strategy in the following theorem.

Theorem 6: Under the FIPF strategy, the distributor’s optimal order quantity q∗

is

q∗ =
(

A

w
�̃(θ0)

)k

, (25)

where function �̃(·) is defined as
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�̃(θ) :=

∫ 1

0

(x

θ

)1−1/k

f (x)dx − k − 1

k

∫ 1

θ

(x

θ
− 1

) (x

θ

)−1/k

f (x)dx

1 −
∫ θ

0

(
1 − x

θ

)
f (x)dx

, (26)

and the producer’s shipping quantity is Q∗ = q∗/θ0.
To compare q∗ with q∗

c , we have

�̃(θ) − �(θ) =

∫ 1

θ

[
1

k

(x

θ

)1−1/k

+ k − 1

k

(x

θ

)−1/k

− 1

]
f (x)dx

1 −
∫ θ

0

(
1 − x

θ

)
f (x)dx

> 0.

The inequality holds because it is easy to show that a function

ϕ(y) := 1

k
y1−1/k + k − 1

k
y−1/k − 1

is strictly increasing in y ∈ [1, +∞); and as a result, for ∀y ≥ 1, ϕ(y) ≥ ϕ(1) = 0.
By comparing Equation (25) with Equation (9), we immediately arrive at

q∗ ≥ q∗
c . That is, under the FIPF strategy, the producer will eventually induce

the distributor to order more products (compared with the pull model). By doing
so, (i) the distributor’s profit is improved, because �d (q∗) ≥ �d (q∗

c ) > �c
d (q∗

c ) =
�c∗

d ; and (ii) the producer’s profit, which is readily shown to be an increasing
function of the distributor’s order quantity, denoted as �p(q∗), also improves,
as �p(q∗) ≥ �p(q∗

c ) > �c
p(q∗

c ) = �c∗
p . Therefore, the proposed FIPF strategy is

incentive compatible and is a Pareto improvement over the pull model; it improves
the respective performance of the two supply chain members by inducing the
distributor to increase his primary order quantity.

Of course, the practical adoption of the FIPF strategy will require the supply
chain members to share their information and trust in one another. In particular,
if the producer deliberately alters the actual inventory plus factor in hope of
improving her own profit, she may harm the profitability of the distributor. Suppose
the producer and distributor have formed a trust-based strategic alliance while
adopting the FIPF strategy, two natural questions arise: (i) What is the magnitude
of potential profit improvement by adopting the FIPF strategy? and (ii) Which party
will benefit more from the FIPF strategy? We seek answers to these questions by
conducting some numerical studies in the next section.

NUMERICAL STUDIES

In this section, we report the results of numerical experiments designed to gain
insight into the impact of some key parameters, including uncertainties associated
with product deterioration during the long-distance transportation and the price-
elasticity of end-customer demand. Besides comparing the pull with the push
models, we seek to evaluate the magnitude of profit improvement (over the pull
model) by adopting the proposed FIPF strategy.

To lighten the computational effort, we assume the surviving factor � follows
a uniform distribution over the interval [μ−σ , μ+σ ] with 0 <σ ≤ min (μ, 1 −μ).
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The parameter σ measures the deviation of �: for given μ, � has higher deviation
when σ is large. Note that the impact of the uncertainty and size associated with
the market demand are both sealed in the constant A; therefore, without loss of
generality, we normalize A = 10. The values of other base parameters are the
following: c1 + c2 = 1, μ = 0.6, σ = 0.25, w = 3.5, and k = 1.8. We alter the
values of μ, σ , and k, respectively, in each group of experiments.

First, a sample of the numerical results with different values of μ and σ are
reported in Table 2. We evaluate the optimal shipping quantity of the producer and
the optimal expected profits for both supply chain members under the pull and push
models and the FIPF strategy, respectively. Using the pull model as a benchmark,
we measure the relative profit loss/improvement of the push model and the FIPF
strategy. Table 2 reveals some interesting patterns not readily obtainable from the
analytical formulation.

(i) For all three scenarios, the optimal shipping quantity of the producer is
decreasing in the mean value (for given deviation) and increasing in the
deviation (for given mean value) of �. This is consistent with our intuition:
the producer should ship more when the product is more perishable, and
she should also ship more to hedge against the higher deterioration risk
during transportation. As a result, both the producer and distributor’s
profits are decreasing in μ and σ , as expected.

(ii) Compared with the pull model, it seems that the adoption of the push
model has a more significant impact on the producer’s performance. As
can be seen, the producer’s profit reduction is quite high (the average
reduction is more than 10%), whereas the distributor’s profit reduction is
rather low (mostly less than 1%). This implies that generally, the producer
has more motivation to choose the pull model. Moreover, it is shown
that the reduction in the profit of both parties is more significant when
the product is more perishable (i.e., when μ is small) and when the
deterioration has higher uncertainty (i.e., when σ is large).

(iii) Compared with the pull model, it seems that the producer benefits more
from adopting the FIPF strategy. As can be seen, the producer’s profit
increases significantly (by more than 10% for most cases), whereas the
distributor’s profit only increases slightly (all below 1%). The results
suggest that the FIPF is an efficient strategy that the producer should try
to implement. Moreover, it is shown that both parties gain more from the
FIPF strategy when the product is less perishable (i.e., when μ is large)
and when the deterioration has higher uncertainty (i.e., when σ is large).

Next, we alter the value of the price elasticity, k, and report the numerical
results in Table 3. As was shown, for the three scenarios, the producer will ship
more products when customer demand is more price sensitive (i.e., when k is
large). Another interesting phenomenon is that the producer’s expected profit is
increasing, whereas the distributor’s profit is decreasing in k; this implies that the
producer’s relative power in the supply chain is stronger for a more price-sensitive
market. Similar to the findings from Table 2, compared with the pull model, the
adoption of a push model or an FIPF strategy mainly affects the performance of
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the producer, and only has a slight impact on the distributor’s profit. Moreover, the
producer loses less (in the push model) and gains more (under the FIPF strategy)
when the price-elasticity is large; in contrast, the distributor loses more (in the
push model) and gains more (under the FIPF strategy) when the price-elasticity is
large.

CONCLUDING REMARKS

Fresh-product supply chains involving long distance transportation have become
increasingly common in international and domestic markets. Compared with the
management of conventional supply chains, the highly perishable nature of prod-
ucts during transportation creates extra challenges in matching uncertain supply
with uncertain demand for producers and distributors in the supply chain. Depend-
ing on the model of doing business, the product transportation risk has a different
impact on the supply chain members. In this article, we conducted an extensive
comparative study of different business models by considering a supply chain
consisting of a single producer and a single distributor.

Specifically, by focusing on the scenario in which the producer is responsible
for the product transportation, we studied two variants of business models that exist
in practice. After an in-depth investigation of the optimal shipping quantity, order
quantity, and retail price decisions for the pull and push models, we show that
both supply chain members will achieve better performance by adopting the pull
model. This suggests that firms involved in the fresh-product supply chain switch
from the push model to the pull model. Considering that the producer may suffer
from having surplus inventory, we propose a compensation opportunity to deal
with any surplus inventory at a possibly discounted wholesale price. Although the
secondary transaction benefits both supply chain members by offering such an
opportunity before the distributor places his primary order, the producer is likely
to be worse off because the secondary transaction may motivate the distributor to
order less and therefore increases the risk faced by the producer. We then suggest
the FIPF strategy, under which the producer ships 1/θ0 times the quantity ordered
and the distributor compensates the producer for any surplus inventory that would
otherwise be wasted. We show that both parties will be better off under the FIPF
strategy. Finally, numerical experiments are conducted to evaluate the magnitude
of profit improvement by adopting the FIPF strategy. The major finding is that the
FIPF strategy benefits the producer much more significantly than the distributor,
especially when the product is less perishable, when the perishability has higher
uncertainty, and/or when the end-customers are more price-sensitive.

Considering the uncertain product decay during transportation and distribu-
tion processes provides vast opportunities for future research: (i) Firstly, in this
study we only compare business models for the scenario in which the producer
is in charge of the product transportation. It would be interesting to compare the
business models studied in this article with other potential business models (e.g.,
the free-on-board model, for example) by considering the wholesale price as a
decision variable. (ii) The FIPF strategy proposed in this article is only a Pareto
improvement over the pure pull model; naturally, whether we can design suit-
able mechanisms to induce the two parties to act in a coordinated way, so that
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the maximal performance of the supply chain can be achieved, remains an open
problem. (iii) Because the long-distance transportation is time-consuming, it is
quite likely that the producer and/or distributor may use the updated information
regarding market demand to make better decisions in the second period. Therefore,
to consider information updating, for example, by assuming full and asymmetric
information between supply chain members (Cachon & Lariviere, 2001), is an-
other line of possible future research toward fresh-product supply chains. (iv) We
have considered the simplest scenario with only one producer and one distributor.
It will be interesting to study scenarios with multiple suppliers and/or multiple
distributors. For example, by delivering products to multiple distributors, the pro-
ducer may hedge against transportation risk from the potential inventory pooling
effect. This opens a new and important direction for the future research toward
fresh-product supply chain management. (v) Finally, as suggested by Blackburn
and Scudder (2009) and Cai et al. (2010), an important dimension of the manage-
ment of fresh product supply chains is to reduce losses from product perishability
by, for example, shortening the transportation lead time and therefore reducing
transportation delays, implementing temperature control, adopting chemical treat-
ments, and improving cold storage capabilities. Therefore, it will be interesting to
extend our models to the case incorporating freshness-keeping effort decisions.
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