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This paper provides a new portfolio selection rule. The objective is to minimize the
maximum individual risk and we use an l� function as the risk measure. We provide an

explicit analytical solution for the model and are thus able to plot the entire efficient frontier.
Our selection rule is very conservative. One of the features of the solution is that it does not
explicitly involve the covariance of the asset returns.
(Portfolio Selection; Risk Averse Measures; Bicriteria Piecewise Linear Program; Efficient Frontier;
Kuhn-Tucker Conditions)

1. Introduction
The portfolio selection problem is of both theoretical
and practical interest. Markowitz (1952) laid the foun-
dations for this line of research with his mean-vari-
ance (M-V) model. While Markowitz used the portfo-
lio variance as a risk measure, other risk definitions
have been proposed. Konno (1990) and Konno and
Yamazaki (1991) used the mean absolute deviation as
their risk measure. The mean absolute deviation cor-
responds to an l 1 function, whereas the variance
corresponds to an l 2 function. In this paper we pro-
pose a more conservative portfolio selection rule
whereby the investor minimizes the maximum risk of
the individual assets. This risk measure corresponds
to an l� function.

The classic M-V model can be solved analytically
for the efficient frontier (see Merton 1972) when
short selling is permitted. It has been found that the
composition of the optimal portfolio can be very
sensitive to estimation errors in the expected returns
of the underlying assets; see Chopra and Ziemba

(1998), Hensel and Turner (1998), Chopra et al.
(1992) and Best and Grauer (1991a, 1991b, 1992). In
the case of large-scale optimization problems the
relationships between the inputs and the optimal
portfolio tends to be obscured (Best and Grauer
1991a). Our model provides a clear connection be-
tween the expected returns of the assets and their
importance in the optimal portfolio. Under our
decision rule there are two steps in the solution.
First we rank the individual assets in terms of their
expected returns and risks. Second, we compute the
optimal properties based on the information con-
tained in the rankings. The ranking rule consists of
inequalities among the expected returns. This en-
ables us to see more clearly how the composition of
the portfolio varies. There are two important differ-
ences between our model and conventional models,
such as the M-V model. In our model we do not
allow for short selling. We impose this restriction to
obtain a simple analytical solution. It is a weakness
of the model. In our model correlations among the

0025-1909/00/4607/0957$05.00
1526-5501 electronic ISSN

Management Science © 2000 INFORMS
Vol. 46, No. 7, July 2000 pp. 957–972



assets are not taken into account. This is in contrast
to the M-V approach where diversification helps to
reduce risk. However, we argue that total portfolio
risk— under the conventional definition—will be
kept small if our risk measure is kept small. In some
respects our approach is related to that of Young
(1998). In both models there is no short selling and
the asset correlations do not enter explicitly into the
solutions. The main differences are:

(i) Our model minimizes the expected absolute
deviation of the future returns from their mean while
Young’s model maximises the minimum portfolio
return over a set of past returns.

(ii) Young’s solution involves linear programming
whereas we are able to provide an analytical solution.

2. A New Risk Measure Based on l�

In this section, we introduce our risk measure and
formulate the corresponding portfolio optimization
problem with this measure. Assume that an investor
has initial wealth M 0, which is to be invested in n
possible assets S j, j � 1, . . . , n. Let R j be the return
rate of the asset S j, which is a random variable. Let x j

� 0 be the allocation from M 0 for investment to S j.
(Note that by assuming x j � 0 we are concerned with
the situation where short selling is not allowed). Thus,
the feasible region for the portfolio optimization prob-
lem is

� � �x � �x1, . . . , xn�: �
j�1

n

xj � M0, xj � 0,

j � 1, . . . , n� . (2.1)

Let E(R) denote the mathematical expectation of a
random variable R. Define

rj � E�Rj� and qj � E��Rj � rj��.

Namely, r j and q j denote the expected return rate of
the asset S j and the expected absolute deviation of R j

from its mean, respectively.
The expected return of a portfolio x � ( x 1, . . . , x n)

is given by

r�x1, . . . , xn� � E� �
j�1

n

Rjxj�
� �

j�1

n

E�Rj�xj � �
j�1

n

rjxj. (2.2)

The l� measure we propose is defined as follows.
Definition 2.1. The l� risk function1 is defined as

w��x� � max
1�j�n

E��Rjxj � rjxj��. (2.3)

Let x � �. Then w�(x) � max1�j�n E(�R j � E(R j)�) x j

� max1�j�n q jx j. This function is explicitly known if
the distribution of each random variable R j is given.
For example, if R j is normally distributed, then it is
easy to verify (see Konno and Yamazaki 1991) that

w��x� � max
1�j�n

�2
�

� jxj, (2.4)

where � j is the standard deviation of R j. Historical
data can also be used to estimate r j and q j.

We assume that investors wish to maximize ex-
pected return while minimizing their risk level. This is
an optimization problem with two criteria in conflict.
Under the l� risk measure as defined above, our
portfolio optimization problem can be formulated as a
bicriteria piecewise linear program as follows, which
is denoted as POL� (the Portfolio Optimization prob-
lem with the l� risk measure).

Definition 2.2. The bicriteria portfolio optimiza-
tion problem POL� under the l� risk measure is
formulated as:2

Minimize �max
1�j�n

qjxj, � �
j�1

n

rjxj	
subject to x � �,

where a feasible portfolio x � ( x 1, . . . , x n) � � is said

1 See, for example, Başer and Bernhard (1995), for more discussion
on the l� notation and other related minimax measures.
2 Minimize ( A, B) indicates that A and B are the two criteria to be
minimized.
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to be efficient if there exists no y � ( y 1, . . . , y n) � �
such that

max
1�j�n

qjyj � max
1�j�n

qjxj, �
j�1

n

rjyj � �
j�1

n

rjxj,

and at least one of the inequalities holds strictly.
Accordingly, the function value (max1�j�n q jx j, � ¥ j�1

n

r jx j) is said to be an efficient point.
In words, an efficient point is such that there exists

no solution better than it with respect to both criteria.
The efficient frontier is the collection of all efficient
points.

By a simple transformation, one can show that
POL� is equivalent to the following Bicriteria Linear
Programming (BLP) problem

Minimize �y, � �
j�1

n

rjxj	
subject to qjxj � y, j � 1, . . . , n,

x � �.

Now we convert the bicriteria linear programming
problem BLP into a parametric optimization problem
with a single criterion. For a fixed �, where 0 � � � 1,
the Parametric Optimization problem of BLP, denoted
as PO(�), is as follows:

Minimize F��x, y� � �y � �1 � ���� �
j�1

n

rjxj	
subject to qjxj � y, j � 1, . . . , n,

x � �.

The equivalence relation between BLP and PO(�) is
given below (cf. Yu 1974 for proof).

Proposition 2.1. Consider the problems BLP and
PO(�). The pair (x, y) is an efficient solution of BLP if and
only if there exists a � � (0, 1) such that (x, y) is an optimal
solution of PO(�).

One can think of � as an investor’s risk tolerance
parameter—the larger the �, the more risk the investor

is to tolerate. Because of the equivalence between
POL� and BLP, there exists the same equivalence
relationship between POL� and PO(�). Thus, an opti-
mal solution for PO(�) gives, accordingly, an efficient
solution for POL�. To obtain the efficient frontier of
POL�, one has to know the optimal solutions of PO(�)
for all � � (0, 1).

In §3 and §4 below, we will show that an optimal
solution for PO(�) can be derived analytically, and
consequently the whole efficient frontier of POL� can
also be determined analytically.

3. A Simple Optimal Investment
Strategy

Consider the problem PO(�) with a given � � (0, 1).
Note that the parameters r j � E(R j) and q j � E(�R j

� E(R j)�), j � 1, 2, . . . , n, are constants in PO(�).
We assume that

r1 � r2 � · · · � rn. (3.1)

Furthermore, to avoid ambiguity, we assume that
there do not exist two assets S i and S j, i � j, such that
r i � r j and q i � q j (if such two assets do exist in the
original problem, we may treat them as a single
aggregate asset).

3.1. All Assets Are Risky
In this subsection we consider the case where all the
assets are risky. We present our main result and
provide some discussion of its meaning.

Theorem 3.1. For any � � (0, 1), an optimal solution
to PO(�) is given by

x*j � 

M0

qj � �
l��*���

1
ql	 �1

, j � �*���,

0, j��*���;
(3.2)

y* � M0� �
l��*���

1
ql	 �1

, (3.3)

where �*(�) is the set of assets to be invested, which is
determined by the following rule:

(a) If there exists an integer k � [0, n � 2] such that
rn � rn�1

qn
	

�

1 � �
, (3.4)
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rn � rn�2

qn
�

rn�1 � rn�2

qn�1
	

�

1 � �
, (3.5)

� � � � � � � � �

rn � rn�k

qn
�

rn�1 � rn�k

qn�1
� · · · �

rn�k�1 � rn�k

qn�k�1
	

�

1 � �
,

(3.6)
and

rn � rn�k�1

qn
�

rn�1 � rn�k�1

qn�1
� · · · �

rn�k�1 � rn�k�1

qn�k�1

�
rn�k � rn�k�1

qn�k
�

�

1 � �
, (3.7)

then

�*��� � 	n, n � 1, . . . , n � k
. (3.8)

(b) Otherwise, if the condition above is not satisfied by
any integer k � [0, n � 2], then

�*��� � 	n, n � 1, . . . , 1
. (3.9)

The proof of this theorem is given in Appendix A.
We now discuss the meaning of the results by exam-
ining how changes in the portfolio affect its expected
return and risk.

Suppose we have a portfolio x0, in which x j
0 � 0 if

j � � 0 and x j
0 � 0 if j � � 0. Namely, �0(�) is the set

of assets to be invested. Assume there is an asset S h

that is not included in �0(�). We will now analyse how
the performance of the portfolio will change if the
allocation x h to the asset S h is increased. Let us
construct a new portfolio x� as follows:

x�j � � x j
0 �  j, if j � � 0���;

h, if j � h;
0, otherwise.

(3.10)

Further, suppose y 0 is the corresponding risk of the
portfolio x 0 (that is, (x0, y 0) constitutes a solution for
the problem PO(�)). We construct a new solution
(x�, y�) for PO(�) by creating x� as above and setting

y� � y 0 � y. (3.11)

To meet the constraints of the problem PO(�), we
should have

�
i�1

n

x�j � �
i�1

n

x j
0 � �

j�� 0���

 j � h � M0,

x�jqj � �x j
0 �  j�qj � y 0 � y, for j � � 0���,

x�hqh � hqh � y 0 � y.

Thus, we can choose  j,  h and  y as positive num-
bers satisfying

h � �
j�� 0���

 j, (3.12)

 j �
y

qj
, j � � 0���, (3.13)

h � �y 0 � y�/qh. (3.14)

Recall F �(x, y) is the objective function of the
problem PO(�). We have

F��x�, y�� � ��y 0 � y� � �1 � �� �
j�� 0���

rj�x j
0 �  j�

� �1 � ��rhh

� F��x 0, y 0� � �y � �1 � �� �
j�� 0���

rj j

� �1 � ��rh �
j�� 0���

 j

� F��x 0, y 0� � F, (3.15)

where

F � �y � �1 � �� �
j�� 0���

rj j � �1 � �� �
j�� 0���

rh j.

(3.16)
It is easy to see that in the above equation, {� y}

indicates the decrease in the risk, {(1 � �) ¥ j��0 (�) r j j}
is the decrease in the expected return due to the
decreases in the allocations to the assets j � � 0(�),
and {(1 � �) ¥ j��0 (�) r h j} indicates the increase in the
expected return due to the addition of the asset S h to
the set of assets to be invested.

From (3.13), we can rewrite (3.16) as

F � �� � �1 � �� �
j�� 0���

rj � rh

qj �y. (3.17)

Define � a � { j: j � � 0(�) and r j � r h} and � b � { j:
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j � � 0(�) and r j � r h}. Then, (3.17) can be rewritten
as

F �  F
a �  F

b , (3.18)

where

 F
a � �� � �1 � �� �

j��a

rj � rh

qj �y, (3.19)

and

 F
b � � �1 � �� �

j��b

rh � rj

qj �y. (3.20)

We now have the following few scenarios.
Case 1:  F

a � 0. From (3.19), we can see that  F
a � 0

means that the decrease in the risk value, {� y}, is
greater than the decrease in the net expected return.
This together with  F

b � 0 gives us  F � 0. Thus, it
follows from (3.15) that F �(x�, y�) � F �(x0, y 0). This
means that the portfolio x0 can still be improved if the
asset S h is included into the set of assets to be invested.
This justifies (3.6).

Case 2:  F
a � 0 and the set � b is empty. In this case,  F

�  F
a � 0. This means that increasing the allocation

for the asset S h will either result in a decrease in the
net expected return that is greater than the decrease in
the risk value (if  F

a � 0), or yield no benefit (if  F
a

� 0). Hence, the asset S h should not be included in the
set of assets to be invested. This justifies (3.7).

Case 3:  F
a � 0 and the set � b is not empty. As � b is not

empty, there must exist at least one element m � � b

such that r m � r h. We can show, following a similar
idea as above (that is, altering the portfolio by remov-
ing the asset S m and then increasing the allocations to
other assets accordingly), that in this case the asset S m

should not be included in the set �0(�) for investment.
This, together with the observation that the asset S m

must meet the condition (3.7) (this is because r m � r h

and  F
a � 0), justifies (3.7).

The above gives a justification of the ranking rule of
Theorem 3.1. We now provide several remarks regard-
ing the optimal portfolio as determined by the theo-
rem.

Remark 3.1. It may be a bit surprising to observe
that the investment strategy given by Theorem 3.1

always suggests including those assets with higher
return rates first. In other words, an asset with a
higher return rate should always be considered before
an asset with a lower return rate is considered for
selection. The reason for this apparently counterintui-
tive result is that the actual amount invested in a
particular asset also depends on the risk of that asset.
Hence, it is possible that the actual investment to an
asset with a high return rate is nearly zero, even if it
may have been selected according to the rules given
by Theorem 3.1. To see this more clearly, consider an
example which we assume satisfies (r n � r n�1)/q n

� �/(1 � �) and (r n � r n�2)/q n � (r n�1 � r n�2)/q n�1

� �/(1 � �). Thus, it follows from Theorem 3.1 that
an optimal investment strategy is to select assets S n

and S n�1 only. Further, according to Theorem 3.1, the
actual amounts of investment for the assets will be
respectively:

x*n �
M0

qn�1/�qn�1� � 1/qn�
�

M0

qn/�qn�1� � 1
, and

(3.21)

x*n�1 �
M0

qn�1�1/�qn�1� � 1/qn�
�

M0

1 � �qn�1�/qn
.

(3.22)

Clearly, if q n is much greater than q n�1, then it is
possible that x*n is nearly zero while x*n�1 is nearly
equal to M 0.

The optimal strategy as described in Theorem 3.1 is
a two-phase decision. In the first phase, the assets are
selected according to their return rates. Then in the
second phase, the actual amounts allocated to those
selected assets are determined based on their risks.
When the transaction cost for investing an asset is
taken into consideration, a very small allocation of
funding to the asset may mean that it should in fact be
omitted. Thus, under the investment strategy of The-
orem 3.1, an asset may be eliminated in either Phase 1
or Phase 2. In Phase 1, it may be eliminated if its return
rate is too low, while in Phase 2, it may also be
eliminated if its risk is too high.

Remark 3.2. The optimal investment strategy
given by Theorem 3.1 has the property that x*jq j � y*
for all j � �*(�) (and x*j � 0 for all j � �*(�)). This
means that, for the assets selected for investment, we
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shall invest them with the amounts such that they
have the same risk y* (note that E(�R jx j � r jx j�) � q jx j

represents the risk of investing an amount x j in asset
S j; see Definition 2.1). Note that our problem under
the l� measure is to minimize the maximum individ-
ual risk, namely, w�(x) � max1�j�n E(�R jx j � r jx j�).
Theorem 3.1 implies that to achieve this objective, an
optimal investment strategy should invest the assets
in such a way that their risks are equal. One can see
that, if this is not the case, that is, there exists some
asset whose risk is less than that of another asset, then
the allocation to this asset can be increased. Such a
change of allocation will not increase the maximum
risk, while the overall expected return will be in-
creased (for details, see the proof of Lemma 4.1 in
§4—the part on the inefficiency of the solution (x*, y*)
if the risks of the assets selected under (x*, y*) are
unequal).

Remark 3.3. Another property of the optimal port-
folio given by Theorem 3.1 is that the amounts of x*j, j
� �*(�), do not depend on the return rates r j, as long
as the set �*(�) is selected. This indicates that the
expected return rates determine the set of investable
assets, but do not influence the magnitudes of the
allocations. This property does not seem to exist in
portfolio solutions under other models such as the
classic M-V model. Why is this a sensible property?
The answer is: (i) the information of the expected
return rates is exploited already in the selecting rules
of Theorem 3.1 when determining the set of investable
assets; and (ii) after the assets selected for investment
have been determined using the selecting rules, how
to minimize the risk of the investment will become the
major concern. Under our model, the maximum indi-
vidual risk is to be minimized. As we discussed above,
to achieve this goal, a sensible way is to have all the
assets invested carrying the same risk. This leads to
the allocations that are independent of the expected
return rates.

Remark 3.4. It is easy to see from Theorem 3.1 that
a case where we invest all fund M 0 in a single asset is
when

rn � rn�1

qn
�

�

1 � �
. (3.25)

Nevertheless, it should be noted that there exist other
cases where almost all the fund M 0 should be invested
in a single asset. See Remark 3.1 above. A case where
all the fund is invested in a single riskless asset will be
further addressed in §3.2 below.

Remark 3.5. Note that the case where we will
select all the assets S j, j � 1, 2, . . . , n, for investment
is when Condition (3.7) is not satisfied by any 0 � k
� n � 2. In this case, �*(�) � {n, n � 1, . . . , 2, 1}
and the proportions of the assets in the efficient
portfolio are given by (3.2). More specifically, if we
assume M 0 � 1, from (3.2) we have

x*i �
1/qi

¥ k�1
n 1/qk

, i � 1, 2, . . . , n. (3.26)

There exists an interesting relationship3 between
this portfolio and the global minimum variance
(GMV) portfolio under the M-V model (see, e.g.,
Haugen 1997). This is analysed as follows.

Suppose the variance of asset S i is � i
2, i � 1, 2, . . . ,

n, and assume that the assets are uncorrelated. In this
case we can show that the proportions of the assets,
x i

{, in the GMV portfolio are given below:

x i
{ �

1/� i
2

¥ k�1
n 1/� k

2 , i � 1, 2, . . . , n. (3.27)

Moreover, in the situation when the asset returns are
normal, we have q i � �(2/�) � i (see (2.4)), and thus
(3.26) can be rewritten as

x*i �
1/� i

¥ k�1
n 1/�k

, i � 1, 2, . . . , n. (3.28)

This has a clear analogy with (3.27). Under our model,
the efficient portfolio uses 1/�, while in the M-V
model, the GMV portfolio uses 1/�2.

Remark 3.6. In recent years, it has been shown (see
Chopra and Ziemba 1998, Hensel and Turner 1998,
Chopra et al. 1992, and Best and Grauer 1991a, 1991b,
1992) that the composition of an efficient M-V portfo-
lio can be extremely sensitive to errors in problem
inputs. In particular, it has been found that errors in

3 We are very grateful to Professor P. P. Boyle, the department
editor for Finance, for pointing out this relationship. The material
here has been based on a note kindly provided by him.
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the asset means can be much more damaging than
errors in other parameters. Therefore, a similar question
we may face is how sensitive the solution of our model
could be to changes in the asset means. We now discuss
this question. Assume that m � n � k � 1 is the asset that
satisfies the Condition (3.7). In other words, �*(�) � {n,
n � 1, . . . , m � 1} and asset Sm is the first one excluded
from the set �*(�) (see Theorem 3.1). Let us analyse the
following three categories of assets, where 
i denotes a
perturbation of ri.

(a) On the assets S j with j � m: All these assets are
not selected for investment by Theorem 3.1. Further-
more, this solution remains unchanged as long as r j

� 
 j � r m. This means that the optimal portfolio is
unchanged as long as the perturbations are within the
following ranges:

�� � 
j � rm � rj, for j 	 m. (3.29)

(b) On the asset Sm: Clearly, if (i) rm � 
m � rm�1 and (ii)
rn � rm � 
m

qn
�

rn�1 � rm � 
m

qn�1
� · · ·

�
rm�1 � rm � 
m

qm�1
�

�

1 � �
,

then the optimal portfolio is unchanged. Let � m

� ¥ k�m�1
n (r k � r m)/q k � �/(1 � �). Then, to satisfy

the above two conditions, it is sufficient for us to have

�� � 
m � min� �m

¥ k�m�1
n 1/qk

, rm�1 � rm� . (3.30)

(c) On the assets Sj with j � m: Let �j � �/(1 � �)
� ¥k�j�1

n (rk � rj)/qk, for j � m. Bear in mind that we want
to determine an interval for 
j such that the conditions of
Theorem 3.1 remain satisfied. After some development,
we can show that a sufficient condition is as follows:

max� �� j

¥ k�j
n 1/qk

, ��mqj, rj�1 � rj� � 
 j

� min	�m�1qj, rj�1 � rj
, if j � m � 1; (3.31)

max� �� j

¥ k�j
n 1/qk

, ��mqj, rj�1 � rj� � 
 j � rj�1 � rj,

if j � m � 1. (3.32)

In summary, the analysis above indicates that if the

perturbation 
 i of an asset mean r i is within the
interval of (3.29)–(3.32), then the optimal portfolio
under our model will remain unchanged. Note that
(3.29)–(3.32) are sufficient conditions, and in many
cases these may not be satisfied at all (but the portfolio
may still remain unchanged if they are not satisfied).
Generally speaking, because the ranking rule for se-
lecting the assets to be invested under our model is
given by a set of inequalities (3.4)–(3.7), our model
exhibits some robustness against errors in the problem
inputs.

On the other hand, we should emphasize that our
model can also be quite sensitive in some cases to
errors of the problem parameters, such as the means.
To illustrate, let us consider an example in which there
are three assets with estimated means r 1 � r 2 � r 3.
Suppose (r 3 � r 2)/q 3 � �/(1 � �) and (r 3 � r 1)/q 3

� (r 2 � r 1)/q 2 � �/(1 � �). Then, by Theorem 3.1,
we choose Assets 2 and 3 and x*1 � 0, x*2 � q 3/(q 2

� q 3), and x*3 � q 2/(q 2 � q 3). Further, suppose q 2 is
much greater than q 3. Then, x*2 � 0, and x*3 � M 0.
However, there is an error in r 1 and the actual mean r�1
of Asset 1 satisfies r 2 � r�1 � r 3 and (r 3 � r�1)/q 3

� �/(1 � �) and (r 3 � r 2)/q 3 � (r�1 � r 2)/q 1 � �/(1
� �). In this case, we should actually choose Assets 1
and 3 and the portfolio should be: x*2*� 0, x*1*� q 3/(q 1

� q 3), and x*3*� q 1/(q 1 � q 3). Further, suppose q 3 is
much greater than q 1. Then, x*1*� M 0, and x*3*� 0. In
this example, an error in the estimation of r 1 has
changed the portfolio almost completely.

3.2. Inclusion of a Riskless Asset
We now consider the case where there exists a riskless
asset. Without loss of generality, we may assume that
this riskless asset has the lowest return, namely, i � 1
(recall our Assumption (3.1) and note that all risky
assets could be eliminated from consideration if their
returns are not greater than that of the riskless asset).

Under the assumption above, we have q 1 � 0. To
generalize the result in §3.1, we first assume that q 1

�  � 0, where  is a sufficiently small number. We
then obtain our result by letting  3 0�. Let us now
consider the following two cases.

Case 1. According to the rule given in Theorem 3.1
(with q 1 �  � 0), we find that 1 � �*(�). In this case,
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it is obvious that the optimal solution for PO(�) as
given in Theorem 3.1 is unchanged.

Case 2. According to the rule given in Theorem 3.1
(with q 1 �  � 0), we find that 1 � �*(�). In this case,
the optimal solution for PO(�) becomes

x*j � 0, � j��*���,

x*j �
M0

qj
�1


� �

l�n�k,l�1

n 1
ql
	 �1

, j � �*���,

y* � M0�1


� �
l�n�k,l�1

n 1
ql
	 �1

.

Letting  3 0�, we obtain x*j � 0 for all j � 1, x*1
� M 0 and y* � 0.

Clearly, the case where the riskless asset S 1 is
selected into the set �*(�) for investment happens only
when

rn � r1

qn
�

rn�1 � r1

qn�1
� · · · �

r2 � r1

q2
	

�

1 � �
. (3.33)

Combining Case 1 with Case 2 above, we have the
following result.

Theorem 3.2. Given any � � (0, 1). If (3.33) is not
satisfied, then the set �*(�) of assets to be selected should be
determined by (3.4)–(3.8) and the optimal solution should
be computed by (3.2) and (3.3). Otherwise, if (3.33) is
satisfied, the optimal investment strategy should be to
invest all fund M 0 in the riskless asset (where y* � 0).

4. Tracing Out the Efficient Frontier
We now discuss how to determine the efficient fron-
tier of the problem POL�. Corresponding to the results
in §3.1 and §3.2 respectively, let us carry out our
analysis in the following two subsections.

4.1. No Riskless Assets Are Involved
First, define:

�k �
1
qn

�
1

qn�1
� · · · �

1
qn�k�1

,

k � 1, 2, . . . , n � 1, (4.1)

�k �
rn � rn�k

qn
�

rn�1 � rn�k

qn�1
� · · · �

rn�k�1 � rn�k

qn�k�1
,

k � 1, 2, . . . , n � 1. (4.2)

It is easy to verify that

� �k � �k�1 � �k�rn�k�1 � rn�k�,
k � 1, 2, . . . , n � 1

�0 � 0,
(4.3)

where � k can be computed by the following recursive
relation:

� �k � �k�1 �
1

qn�k�1
, k � 1, 2, . . . , n � 1

�0 � 0.
(4.4)

It is clear that (3.4)–(3.7) reduce to determining an
integer k � [0, n � 2] such that:

�1 	
�

1 � �
, . . . , �k 	

�

1 � �
,

�k�1 �
�

1 � �
. (4.5)

Because q j � E(�R j � E(R j)�) � 0 for any j, � k � 0
for k � 1, 2, . . . , n � 1 (see (4.4)). Thus, noting that
r j � r j�1 for j � 1, 2, . . . , n � 1, we know that

�0 � �1 � �2 � · · · � �n�1. (4.6)

Therefore, the Conditions (4.5) reduce to:

�k 	
�

1 � �
, �k�1 �

�

1 � �
, (4.7)

Or, equivalently,

�k

1 � �k
	 � �

�k�1

1 � �k�1
. (4.8)

Letting

�� k �
�k

1 � �k
and �� k �

�k�1

1 � �k�1
, (4.9)

we see that the Conditions (4.5) (or (3.4)–(3.7)) are
further equivalent to

� � ��� k, �� k�. (4.10)

Bear in mind that we want to determine the efficient
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frontier, namely, all the efficient points, corresponding
to all possible � � (0, 1). Recall Theorem 3.1. Given an
integer k � [0, n � 2], it is clear that for all values of
� in an interval (�� k, �� k], the set �*(�) of assets selected
for investment remains unchanged, and thus the op-
timal solution of PO(�) as given by (3.2) and (3.3)
remains unchanged. According to the discussions in
§2, such a solution corresponds to an efficient point of
POL�. Now the question is whether there exist other
efficient points for � � (�� k, �� k]. This is equivalent to
asking whether there exist other optimal solutions for
PO(�) when � � (�� k, �� k].

Our main idea to analyse the efficient frontier
consists of the following arguments:

(1) For all � � (�� k, �� k), the solution given by (3.2)
and (3.3) is the unique optimum for PO(�). Thus, there
is only one efficient point for POL�.

(2) For � � �� k, there are multiple efficient points for
POL�, which, however, can be determined analyti-
cally.

The following two lemmas establish these argu-
ments respectively. For notational convenience, we let
�� n�1 � 1 below.

Lemma 4.1. For any k � 0, 1, . . . , n � 1, if � � (�� k,
�� k), then the solution given by (3.2) and (3.3) is the unique
optimal solution for PO(�).

The proof of this lemma is given in Appendix B.
By substituting (3.2) and (3.3) into the objective

functions of POL� (Definition 2.2), one can see that,
corresponding to the solution (x*, y*) for � � (�� k, �� k),
the efficient point of the problem POL� is equal to

P*k � �y*, z*�, (4.11)

where y* is given by (3.3), while

z* � �M0� �
l��*���

rj

qj	� �
l��*���

1
ql	 �1

. (4.12)

Using the notation above, we have

Lemma 4.2. For any k � 0, 1, . . . , n � 2, if � � �� k, then
(y* � y, z* � y�� k/(1 � �� k)), where

0 � y �
y*

1 � ¥ j��*��� �qn�k�1�/qj
, (4.13)

is an efficient point of the problem POL�.
The proof of this lemma is given in Appendix C.
Remark 4.1. From Lemma 4.2 and its proof we

can see that any solutions which select the assets in
�*(�� k) as well as the asset l � n � k � 1 are optimal
to PO(�). The inclusion of an asset which is not in
�*(�� k) decreases the total return, which, however,
also reduces the risk. If � � �� k for 0 � k � n � 2 or
� � (�� n�2, 1), then such a solution will be domi-
nated by the solution given by (3.2) and (3.3)
(Lemma 4.1 implies this fact). However, if � � �� k for
0 � k � n � 2, the reduction in risk (with a weight
equal to �� k) is just balanced by the reduction in total
return (with a weight equal to 1 � �� k), and thus
generates an undominated (efficient) point.

In summary, we have the following result on the
efficient frontier.

Theorem 4.1. The efficient frontier of the problem
POL� can be determined by considering n intervals (�� k,
�� k), k � 0, 1, . . . , n � 1, as well as n � 1 endpoints �� k,
k � 0, 1, . . . , n � 2. Specifically, the efficient frontier
consists of

(1) the efficient point ( y*, z*) corresponding to each (�� k,
�� k) with k � 0, 1, . . . , n � 1, where y* and z* are given
by (3.3) and (4.12) respectively; and

(2) the multiple efficient points ( y* �  y, z*
�  y�� k/(1 � �� k)) corresponding to each �� k with k � 0,
1, . . . , n � 2, where  y is governed by (4.13).

4.2. Riskless Assets Are Involved
Similar to §3.2, we assume, without loss of generality,
that there is only one riskless asset S i0

; namely, q j � 0
for j � i 0 and q i0

� 0.
According to Theorem 3.2, the optimal solution for

PO(�) is to allocate all fund M 0 to the riskless asset S i0

when (3.22) is satisfied, i.e., � n�i0
� �/(1 � �). This is

equivalent to � � (�� n�i0
, 1). In this case, it is easy to

see that any other solution with an x k � 0 (and thus x i0

� M 0), where k � i 0, will be worse than the solution
with x k � 0 and x*i0

� M 0 (because r k � r i0
but q k � q i0

� 0, any reallocation of the fund M 0 from the asset S i0

to the asset S k will increase the objective function
value of PO(�)). This means that the optimal solution
for PO(�) is unique when � � (�� n�i0

, 1).
When � � (�� n�i0

, 1), the asset S i0
is not selected by
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the rule of Theorem 3.1 and the relevant analysis in
§4.2 above is still valid. Therefore, we have

Theorem 4.2. The efficient frontier of the problem
POL� can be determined by considering n � i 0 � 1
intervals (�� k, �� k), k � 0, 1, . . . , n � i 0 � 1, and (�� n�i0

,
1), as well as n � i 0 endpoints �� k, k � 0, 1, . . . , n � i 0

� 1. Specifically, the efficient frontier consists of
(1) the efficient point ( y*, z*) corresponding to each

(�� k, �� k) with k � 0, 1, . . . , n � i 0 � 1 or (�� k, 1) with
k � n � i 0, where y* and z* are given by (3.3) and (4.12)
respectively; and

(2) the multiple efficient points ( y* �  y, z* � (�� k/(1
� �� k)) y) corresponding to each �� k with k � 0, 1, . . . , n
� i 0 � 1, where  y is governed by (4.13).

5. Total Portfolio Risk and
Covariances

At first sight, it seems that neither our new risk
measure w �(x), nor the optimal solution derived,
depends on the covariances between assets. Also, it
seems that only the risks of the individual assets,
rather than the risk of the entire portfolio, are taken
care of. This feature of our approach is in marked
contrast to the conventional approach which explic-
itly takes account of the covariances between the
assets.

We should point out here that the total portfolio risk
is in fact contained in our model, albeit in an implicit
way. To be more specific, we will show in the follow-
ing that the total portfolio risk is bounded above by
our risk criterion w�(x).

It is well known that the total portfolio risk is
usually modeled as a kind of deviation of the actual
total return from the expected total return. For exam-
ple, in Markowitz’s M-V model, the total portfolio risk
is defined to be the variance as follows:

w2�x� � E� �
j�1

n

Rjxj � �
j�1

n

rjxj� 2

, (5.1)

which is the expected squared deviation of the actual
total return ¥ j�1

n R jx j from the expected total return
¥ j�1

n r jx j. Now, instead of considering the expectation
of the deviation, let us consider the probability that

this deviation is greater than a prespecified level,
namely, P(�¥ j�1

n r jx j � ¥ j�1
n R jx j� � �), where � is a

given positive number. Clearly, to make this probabil-
ity as small as possible is also a way to ensure the
deviation of the actual total return from the expected
total return as small as possible. This is an alternative
measure of the total portfolio risk. By using the
Markov inequality (cf. e.g., Leon-Garcia 1994, p. 137),
one can obtain

P� � �
j�1

n

rjxj � �
j�1

n

Rjxj� � �	
�

1
�

E� � �
j�1

n

Rjxj � �
j�1

n

rjxj� �
�

1
�
�
j�1

n

E�Rj � rj�xj �
n
�

w��x�. (5.2)

The above inequality indicates that the total portfo-
lio risk is bounded by w�(x) multiplied by a constant
n/� which is independent of the choice of the portfo-
lios. The total portfolio risk will be small if w�(x) is
kept small (nevertheless, it may not be true the other
way around).

The analysis above shows that the total portfolio
risk is compressed by the risk w�(x), and what we
propose to do is to minimize w�(x). Note that the
covariances among assets are involved in the total
portfolio risk. Nevertheless, we do not have to deal
with the covariances directly. The advantage of doing
so is obvious even from the implementation point of
view: The optimal investment strategy under our
model is much easier to compute and implement, and
the whole efficient frontier is also much easier to
construct.

An interesting question is how the compositions of
the portfolios under the l� model and the M-V model
would change, and compare to each other, when the
assets to be invested have different degree (or tight-
ness) of correlations. To examine this question, we will
now consider a simple example which contains two
assets. Let � 1

2 � E[(R 1 � r 1)
2], � 2

2 � E[(R 2 � r 2)
2],

and COV(R 1, R 2) � E[(R 1 � r 1)(R 2 � r 2)]. Further,
let � be the correlation coefficient; that is, define �
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� COV(R 1, R 2)/(� 1� 2). Then, the M-V model can be
formulated as follows:

Minimize �w2�x�, ��r1x1 � r2x2�� (5.3)

subject to x1 � x2 � M0, (5.4)

x1 � 0, x2 � 0, (5.5)

where w 2(x) is the variance of the total portfolio (see
(5.1) above). In this two-asset problem, one can see
that w 2(x) � � 1

2x 1
2 � � 2

2x 2
2 � 2�� 1� 2x 1x 2. Introducing

a parameter �, where 0 � � � 1, we can convert the
above bicriteria problem to a parametric optimization
problem as follows:

Minimize ��� 1
2x 1

2 � � 2
2x 2

2 � 2��1�2x1x2�

� �1 � ���r1x1 � r2x2� (5.6)

subject to x1 � x2 � M0, (5.7)

x1 � 0, x2 � 0. (5.8)

Denote the optimal solution for the above problem as
x̂ � ( x̂ 1, x̂ 2) (x̂ corresponds to an efficient point for the
multicriteria model given by (5.3)–(5.5); cf. Yu 1974).
Applying Kuhn-Tucker conditions, after some simpli-
fication we can obtain the following results:

(a) Let A 1 � (� 2
2 � �� 1� 2) M 0 � ((1 � �)/ 2�)(r 1

� r 2) and A 2 � (� 1
2 � �� 1� 2) M 0 � ((1 � �)/ 2�)(r 2

� r 1). If A 1 � 0 and A 2 � 0, then

x̂1 �
A1

� 1
2 � � 2

2 � 2��1�2
, (5.9)

x̂2 �
A2

� 1
2 � � 2

2 � 2��1�2
; (5.10)

(b) If A 1 � 0, then x̂ 1 � 0 and x̂ 2 � M 0;
(c) If A 2 � 0, then x̂ 1 � M 0 and x̂ 2 � 0.
Now, let us consider the following two cases.
Case 5.1. � � 0, namely, assume that the two assets

are not correlated. Moreover, assume that the param-
eters in this case have been so chosen that the two
assets are all selected under both the l� and the M-V
models. It follows from (5.9) and (5.10) that

x̂1 �
� 2

2

� 1
2 � � 2

2 M0 � �1 � �

2� 	� r1 � r2

� 1
2 � � 2

2	 , (5.11)

x̂2 �
� 1

2

� 1
2 � � 2

2 M0 � �1 � �

2� 	� r2 � r1

� 1
2 � � 2

2	 . (5.12)

On the other hand, it is easy to see from Theorem 3.1
that

x*1 �
q2

q1 � q2
M0, (5.13)

x*2 �
q1

q1 � q2
M0. (5.14)

Note that the role of q i is similar to that of � i
2.

Therefore, comparing (5.11) and (5.12) with (5.13) and
(5.14), we can see that the relevant solution x̂ i under
the M-V model has an additional term (i.e., the term
((1 � �)/ 2�)((r 1 � r 2)/(� 1

2 � � 2
2)) for x 1 and ((1 �

�)/ 2�)((r 2 � r 1)/(� 1
2 � � 2

2)) for x 2). This can be
regarded as a compensative term, which makes use of
the information given by the return rates r 1 and r 2 to
fine-tune the portfolio ( x̂ 1, x̂ 2).

The effect of the compensation reduces when the
difference between r 1 and r 2 decreases. This argument
is illustrated by Figures 5.1 and 5.2, where we show
the efficient frontiers of the l� and M-V models,4 in the

4 In each of the figures, we assumed the two assets follow indepen-
dent normal distributions, with �1

2 � 0.8, �2
2 � 0.4, and � � 0. The

values of q 1 and q 2 were computed by the relation q j � �(2/�) � j;
see (2.4). We altered only the values of r 1 and r 2 in the two figures.

Figure 5.1 Efficient Frontiers of l 2 and l � Models in M-V Space
(r 1 � 0.5, r 2 � 0.25)
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M-V space. The two figures consider respectively the
two situations: the difference between r 1 and r 2 is
large (Figure 5.1), and small (Figure 5.2). Note that the
l� solution is always dominated by the M-V solution
in the M-V space, and therefore the efficient frontier of
the l� model is always below that of the M-V model.
Nevertheless, from the two figures we see that the l�

frontier tends to approach the M-V frontier when the
difference between r 1 and r 2 decreases.

Case 5.2. �1
2 � �2

2 � �2, namely, assume the variances
of the two assets are close to each other. In this case,
from (5.9) and (5.10) we have

x̂1 �
� 2�1 � ��M0

2� 2�1 � ��
�

1 � �

2�

r1 � r2

2� 2�1 � ��

�
1
2

M0 � �1 � �

4�� 2 	 r1 � r2

1 � �
, (5.15)

x̂2 �
� 2�1 � ��M0

2� 2�1 � ��
�

1 � �

2�

r2 � r1

2� 2�1 � ��

�
1
2

M0 � �1 � �

4�� 2 	 r2 � r1

1 � �
. (5.16)

Thus, if � � 1, namely, the two assets are highly
correlated, the portfolio x̂ under the M-V model can be
very sensitive to the parameters. It is possible that a
small difference in some parameters will cause x̂ to
allocate all the fund M 0 to an asset (e.g., Asset 1) and

nothing to the other asset. The allocation under the l�

model remains as (5.13) and (5.14) (More specifically,
x*1 � x*2 � 1

2 M 0, if q 1 � q 2).
Remark 5.1. In summary, we have the following

observations:
(i) In situations in which the assets have low or no

correlations, the allocation to each asset under the
M-V model may be further tuned by the information
on the return rates. As compared to the portfolio
under the l� model, the portfolio under the M-V
model may yield a higher return.

(ii) In situations in which the assets are highly
correlated and the variances of the assets are close to
each other, the generation of a portfolio under the M-V
model can be highly sensitive to the parameters. A
small error in the estimation of the parameters may
result in a totally different portfolio. Nevertheless, in
these situations a diversification in the portfolio of the
l� model is still maintained—this should be a desirable
feature to avoid the risk of generating a wrong port-
folio due to some small difference in the parameters.

(iii) A special case of (ii) above is when � � 1. For
the M-V model, this corresponds to the global mini-
mum variance portfolio (see also Remark 3.5). In this
case, (5.15) and (5.16) reduce to x̂ 1 � x̂ 2 � 1

2 M 0, and
now the portfolio under our l� model and that under
the M-V model become nearly identical. Since the
global minimum variance portfolio is the most conser-
vative solution under the M-V model, this also tends
to affirm the argument that our model is a very
conservative one.

6. Concluding Remarks
This article addresses the problem of portfolio selec-
tion for cautious investors. A portfolio optimization
model with a new l� risk measure has been proposed.
A simple scheme has been derived, which generates
the efficient portfolio under the l� model analytically.
We have also shown how the whole efficient frontier
of the l� model can be traced out analytically. A simple
example is discussed to show the portfolio composi-
tions of the l� model as compared to the M-V model.
The analysis indicates that the l� model would be
more stable when assets to be invested are highly
correlated. Nevertheless, the M-V model may generate

Figure 5.2 Efficient Frontiers of l 2 and l � Models in M-V Space
(r 1 � 0.3, r 2 � 0.25)
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higher returns when the assets have no or low corre-
lations.

The new l� model and the related techniques are
easy to manipulate and implement in practice. For
example, our selection of the efficient portfolio is
based on a simple ranking rule, which evaluates one
asset at a time, to determine whether or not it should
be included into the portfolio. This not only allows a
portfolio manager to evaluate which of the current
assets are investable, but also enables him to assess the
impact of the introduction of any new asset on the
efficient portfolio. Also, from the ranking rule, a
portfolio manager can see the desirable characteristics
of those good assets. Besides, our selection of the
optimal portfolio does not involve the correlations
among stocks. This releases a portfolio manager from
the requirement to relate his portfolio selection to
those complicated covariance matrices. The whole
efficient frontier of our model can be constructed
analytically. This is useful, as it makes it easy to
examine the various possible trade-offs between re-
turn and risk.

As revealed by recent research in the portfolio
selection literature, a common problem with portfolio
selection models is their sensitivity to errors in prob-
lem parameters, particularly in the means. We have
shown that, due to the feature that the ranking rule
under our model consists of a set of inequalities, our
model exhibits some robustness to the errors in the
problem inputs. Some conditions under which pertur-
bations in the means would not change the efficient
portfolio have been given in Remark 3.6. However, the
sensitivity analysis in Remark 3.6 is still very brief and
preliminary. Moreover, as we have shown in Remark
3.6, in certain situations our model can also be very
sensitive to errors in the means. As our model relies
heavily on the means, and there is widespread evi-
dence that the means are very difficult to estimate (see
the references cited in Remark 3.6), a more thorough
sensitivity analysis on the model is an important topic
for further research. Both theoretical analysis and
computational evaluation should be helpful.

Our model has the restriction that short selling is
not allowed, and all of our results have been obtained
with this assumption. While it is well known that the

removal of this restriction makes the derivation of an
optimal portfolio for the M-V model much easier, it is
not clear whether this is also true in our model. As
short selling also represents an important class of
market situations, it is an interesting topic for further
research to investigate how the investment strategy of
our model would change if short selling were allowed.
Furthermore, it would be more interesting to general-
ize the model to include the constraints that some x i

are subject to upper bounds U i, some x i are subject to
lower bounds L i, and some x i are subject to no
restriction.5

5 We wish to express our sincere gratitude to Professor Phelim
Boyle, the department editor for Finance, who provided many
valuable suggestions, including a detailed analysis revealing a
relationship of our portfolio to the global minimum variance
portfolio under the M-V model, and drew our attention to related
work in this area. This has led to significant improvements in the
paper. The helpful comments and suggestions from the anonymous
referees and Professor Robert Heinkel, former department editor,
are also much appreciated. Finally, we gratefully acknowledge the
support of an RGC Direct Grant (X. Cai); two research grants from
the PolyU Research Committee (K.-L. Teo and X. Q. Yang), and a
CUHK Mainline Research Grant (X. Y. Zhou).

Appendix A—Proof of Theorem 3.1
We apply the Kuhn-Tucker (K-T) conditions to PO(�). First, let us
introduce the Lagrangian of PO(�):

L�x, y, �, �0, �� � �y � �1 � ���� �
j�1

n

rjxj	 � �
j�1

n

� j�qjxj � y�

� �0� �
j�1

n

xj � M0	 � �
j�1

n

� jxj.

Then, the K-T conditions (see, for example, Zeleny 1981) that an
optimal solution (x, y) must satisfy can be written as follows:

�L
�y

� � � �
j�1

n

� j � 0, (A.1)

�L
�xj

� ��1 � ��rj � � jqj � �0 � � j � 0, j � 1, . . . , n, (A.2)

�
j�1

n

xj � M0, (A.3)

�qjxj � y�� j � 0, j � 1, . . . , n, (A.4)
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� jxj � 0, j � 1, . . . , n, (A.5)

� j � 0, j � 1, . . . , n, (A.6)

� j � 0, j � 1, . . . , n. (A.7)

Define �*(�) � { j: � j � 0}. We let x j � 0, for j � �*(�). (This
is a conjecture, but we shall show in the following that this is in fact
correct in terms of satisfying the K-T conditions.) Then, from (A.4)
we have x j � y/q j, if j � �*(�). Thus, from (A.3) we obtain

y � M0� �
l��*���

1
ql	 �1

. (A.8)

Therefore,

xj � 

M0

qj � �
l��*���

1
ql	 �1

, j � �*���,

0, j��*���.
(A.9)

From (A.5), it follows that if x j � 0, then � j � 0. Thus � j � 0, @j
� �*(�). For j � �*(�), it is clear from (A.2) that

� j �
1
qj

��1 � ��rj � �0 � � j� �
1
qj

��1 � ��rj � �0�. (A.10)

This together with (A.1) gives us � � ¥ l��*(�) (1/q l)[(1 � �)r l

� � 0]. Therefore,

�0 � � �
l��*���

1
ql	 �1� �1 � �� �

l��*���

rl

ql
� �	 . (A.11)

Thus, from (A.10),

� j �
1
qj � �1 � ��rj � � �

l��*���

1
ql	 �1

� � �1 � �� �
l��*���

rl

ql
� �	� , j � �*���, (A.12)

and for j � �*(�),

� j � ��1 � ��rj � � jqj � �0 � ��1 � ��rj � �0. (A.13)

Clearly, if one can correctly determine the set �*(�) which ensures
that � j and � j as expressed by (A.12) and (A.13) are all nonnegative,
then y and x j as given by (A.8) and (A.9), respectively, will be a
solution satisfying all the K-T Conditions (A.1)–(A.7).

Our argument is, if there exists an integer k � [0, n � 2] such that
(3.4)–(3.7) hold, then �*(�) as given by (3.8) is the set that ensures � j

� 0 and � j � 0. The following analysis proves this argument.
By (A.12), it follows that, for any j � �*(�) � {n, n � 1, . . . , n

� k},

� j � � �
l��*���

qj

ql
	 �1� �1 � �� �

l��*���

rj � rl

ql
� ��

� � �
l��*���

qj

ql
	 �1

�1 � ����� �
l�j�1

n
rl � rj

ql
�

�

�1 � ���
� �

l�n�k

j
rj � rl

ql
� � 0, �by �3.6��.

On the other hand, for j � 1, 2, . . . , n � k � 1, from (A.13) and
(A.10), we have

� j � ��1 � ��rj � � �
l��*���

1
ql	 �1� �1 � �� �

l��*���

rl

ql
� �	

� � �
l��*���

1
ql	 �1� �1 � �� �

l��*���

rl � rj

ql
� �	

� � �
l��*���

1
ql	 �1� �1 � �� �

l��*���

rl � rn�k�1

ql
� �	

� 0 �by �3.7��.

The above shows that the K-T Conditions (A.6) and (A.7) are
satisfied. This together with the fact that the solution given by (A.8)
and (A.9) with the set �*(�) of (3.8) also satisfies (A.1)–(A.5) implies
that all the K-T conditions are satisfied.

In the case where there does not exist any integer k � [0, n � 2]
such that (3.4)–(3.7) hold, we can show that the solution given by
(A.8) and (A.9) with �*(�) � {n, n � 1, . . . , 2, 1}, will satisfy all
K-T conditions. To do this, we may introduce a dummy asset S 0

with r 0 � � L and q 0 � L, where L is a sufficiently large positive
number. (K-T conditions can be applied even if some parameters,
such as an r j, are negative). Following a similar analysis to the one
above, one can show that all the K-T conditions are satisfied.

In summary, because PO(�) is a convex programming problem,
the K-T conditions become necessary and sufficient for optimality
and therefore the solution given by (A.8) and (A.9), or equivalently,
(3.2) and (3.3), which has been shown to satisfy all the conditions, is
optimal. This completes the proof. �

Appendix B—Proof of Lemma 4.1
We first consider k � 0, 1, . . . , n � 2. Suppose that (x0, y 0), where
x0 � ( x 1

0, . . . , x n
0), is an optimal solution for PO(�). Let �0(�) be a

set such that x j
0 � 0 if j � � 0(�) and x j

0 � 0 if j � � 0(�). We shall
first show that, if �0(�) � �*(�) (�*(�) is the set determined by
Theorem 3.1), then we can find a solution better than (x0, y 0) which
leads to a contradiction. Note that it will be sufficient for us to
consider the following two cases.

Case 1. �0(�) � �*(�) and there exists at least one h such that h
� �*(�) but h � � 0(�), namely, x h

0 � 0.
In this case, by constructing a solution (x�, y�) for PO(�) as (3.10)

and (3.11), we can show, after some development, that
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F��x�, y�� � F��x 0, y 0� � y�1 � �����
�

1 � �
� �

j�m

rj � rm

qj 	
� �

j�m

rm � rj

qj � . (B.1)

Because ¥ j�m ((r j � r m)/q j) � �/(1 � �) if m � �*(�) (see
(3.4)–(3.6)) and r m � r j if j � m, (B.1) gives us F �(x1, y 1) � F �(x0,
y 0), implying that a feasible solution (x1, y 1) exists which is better
than the solution (x0, y 0). This contradicts the fact that the solution
(x0, y 0) is optimal. This means that we must have �0(�) � �*(�). We
now consider the following case, the result of which will eliminate
the possibility that � 0(�) � �*(�).

Case 2. �0(�) � �*(�), namely, there is an m with x m
0 � 0, m

� � 0(�) but m � �*(�).
In this case, we can construct a solution (x�, y�) for PO(�) as

follows:

x �j � � x j
0 �  j, j � �*���,

x m
0 � m, j � m,

x j
0, otherwise.

y� � y 0 � y,

where  y, m, and  j are selected to be positive numbers such that

 j �
y

qj
, j � �*���, (B.2)

m � �
j��*���

 j. (B.3)

It is not hard to show that the Relations (B.2) and (B.3) together
with the feasibility of (x0, y 0) ensure that (x2, y 2) is a feasible
solution. Similar to (B.1), one can derive

F��x 0 � �x, y 0 � y�

� F��x 0, y 0� � y�1 � ����
�

1 � �
� �

j��*���

rj � rm

qj 	 . (B.4)

Because ¥ j��*(�) ((r j � r m)/q j) � �/(1 � �) (bearing in mind that
� � (�� m, �� m)), we have F �(x2, y 2) � F �(x0, y 0), which is again a
contradiction.

Combining the results of Cases 1 and 2, we see that �0(�) � �*(�),
namely, any optimal solution (x0, y 0) must have the same set of
assets selected for investment as that in the solution (x*, y*). After
the set �0(�) has been fixed, all assets S j, j � � 0(�), should be
invested such that their risks are equal, namely, x j

0 should be
determined such that q jx j

0 � y 0 for all j � � 0(�). If this is not true,
that is, there exists an asset S m in �0(�) such that 
 � y 0 � x m

0 q m � 0,
then we can increase the allocation to asset S m by a positive amount
m to construct a new solution (x�, y�) as follows:

x�j � 

x j

0 �  j, j � � 0��� and j � m,

x j
0 � m, j � m,

0, otherwise,

y� � y 0 � y,

where

 j �
y

qj
, � j � � 0��� � 	m
,

m � �
j�� 0����	m


 j, and

y �



qm � �
j�� 0���

1
qj	 �1

.

It is easy to see that such a solution (x�, y�) is feasible. Similar to
the analysis in Case 1 above, we can show that that F �(x�, y�)
� F �(x0, y 0).

Clearly, if �0(�) � �*(�), and q jx j
0 � y 0 for all j � � 0(�), then the

solution (x0, y 0) is exactly the same as (x*, y*). This proves the
uniqueness of (x*, y*).

What remains to be considered is k � n � 1. According to (3.9),
the set �*(�) becomes {n, n � 1, . . . , 2, 1} when � � (�� n�1, 1).
Thus, Case 2 above is impossible now. As for Case 1, the proof
remains the same. In summary, the solution given by (3.2) and (3.3)
must be the only optimum for PO(�), if � � (�� k, �� k), k � 0, 1, . . . ,
n � 1. This completes the proof. �

Appendix C—Proof of Lemma 4.2
Case 1 in the proof for Lemma 4.1 continues to be impossible even
if � � �� k, since 0 � � � 1 and thus (B.1) still implies F �(x1, y 1)
� F �(x0, y 0). Nevertheless, it is possible to have Case 2, namely, to
have an asset S l, where l � �*(�), to be selected in an optimal
solution. This is shown below.

Clearly (x*, y*) remains an optimal solution for PO(�) when �

� �� k. Now, we can construct a new solution (x0, y 0) from (x*, y*),
by increasing the value of x l, where l � n � k � 1, to  l and,
accordingly, decreasing the values of all x j by  j for j � �*(�) and
y by  y such that

qj�x*j �  j� � y* � y, j � �*���, (C.1)

ql l � y* � y, (C.2)

�
j��*���

�x*j �  j� �  l � M0. (C.3)

where  l,  j, and  y are all positive, satisfying:

 j �
y

qj
, j � �*���, (C.4)

y � y* � ql l, (C.5)

 l � �
j��*���

 j. (C.6)
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Similar to (B.1), we can show that

F��x 0 � �x, y 0 � y�

� F��x 0, y 0� � y�1 � ����
�

1 � �
� �

j��*���

rj � rl

qj 	 . (C.7)

Because ¥ j��*(�) ((r j � r l)/q j) � �/(1 � �) when � � �� k, we have
F �(x0 � �x, y 0 �  y) � F �(x0, y 0). This means that all points ( y* �

 y, z* � (�� k/(1 � �� k)) y) are efficient points for the bicriteria
problem POL�, as long as  y satisfies (C.4)–(C.6). Note that ( y* �

 y, z* � (�� k/(1 � �� k)) y) is the value of the objective function
under the solution (x0, y 0), as y 0 � y* �  y and

z 0 � � �
j��*���

rj�x*j �  j� � rl l

� z* � �
j��*���

rj j � �
j��*���

rl j

� z* � �
j��*���

�rj � rl�
y

qj

� z* � �k�1y

� z* �
�� k

1 � �� k
y �cf. �4.2� and �4.9��.

It can be seen that  y within the range of (4.13) satisfies (C.4)–
(C.6). This completes the proof. �
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